L. Clark, U. Bhagat, B. Shirinzadeh, P. Chea, Y. Qin, Y. Tian
{"title":"用于微纳操作的微型三自由度柔性机构设计","authors":"L. Clark, U. Bhagat, B. Shirinzadeh, P. Chea, Y. Qin, Y. Tian","doi":"10.1109/3M-NANO.2012.6472940","DOIUrl":null,"url":null,"abstract":"The work presented in this paper focuses on the design of a novel flexure-based mechanism capable of delivering planar motion with three degrees of freedom (3-DOF). Pseudo rigid body modeling (PRBM) and kinematic analysis of the mechanism are used to predict the motion of the mechanism in the X-, Y- and θ-directions. Lever based amplification is used to enhance the displacement of the mechanism. The presented design is small and compact in size (about 142mm by 110mm). The presented 3-DOF flexure-based miniature micro/nano mechanism delivers smooth motion in X, Y and θ, with maximum displacements of 142.09 μm in X-direction, 120.36 μm in Y-direction and 6.026 mrad in θ-rotation.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a miniature 3-DOF flexure-based mechanism for micro/nano manipulation\",\"authors\":\"L. Clark, U. Bhagat, B. Shirinzadeh, P. Chea, Y. Qin, Y. Tian\",\"doi\":\"10.1109/3M-NANO.2012.6472940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presented in this paper focuses on the design of a novel flexure-based mechanism capable of delivering planar motion with three degrees of freedom (3-DOF). Pseudo rigid body modeling (PRBM) and kinematic analysis of the mechanism are used to predict the motion of the mechanism in the X-, Y- and θ-directions. Lever based amplification is used to enhance the displacement of the mechanism. The presented design is small and compact in size (about 142mm by 110mm). The presented 3-DOF flexure-based miniature micro/nano mechanism delivers smooth motion in X, Y and θ, with maximum displacements of 142.09 μm in X-direction, 120.36 μm in Y-direction and 6.026 mrad in θ-rotation.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a miniature 3-DOF flexure-based mechanism for micro/nano manipulation
The work presented in this paper focuses on the design of a novel flexure-based mechanism capable of delivering planar motion with three degrees of freedom (3-DOF). Pseudo rigid body modeling (PRBM) and kinematic analysis of the mechanism are used to predict the motion of the mechanism in the X-, Y- and θ-directions. Lever based amplification is used to enhance the displacement of the mechanism. The presented design is small and compact in size (about 142mm by 110mm). The presented 3-DOF flexure-based miniature micro/nano mechanism delivers smooth motion in X, Y and θ, with maximum displacements of 142.09 μm in X-direction, 120.36 μm in Y-direction and 6.026 mrad in θ-rotation.