低成本、轻量化、固定端点定向平面协作机器人的设计与原型设计

I. Howard
{"title":"低成本、轻量化、固定端点定向平面协作机器人的设计与原型设计","authors":"I. Howard","doi":"10.1109/ICSSE55923.2022.9947353","DOIUrl":null,"url":null,"abstract":"Here we present the design and construction of a low-cost planar robotic arm that makes use of light weight component and a passive link mechanism to maintain fixed endpoint orientation. The arm structure itself is low-cost and built from carbon fiber tubes which yields a high stiffness to weight ratio. To facilitate construction, commercially available pulley and bearing components are used in the design where possible and all custom mechanical parts are 3D printed. To reduce power consumption, the arm makes use of non-back-drivable worm-gear motor actuation, so static arm configurations can be maintained without requiring motor power. We first analyze and simulate the kinematics and the static torque/force relationships of the mechanism. A microcontroller system was then developed to read the sensors and drive the arm motors. Finally, we demonstrate arm operation with simple movement tasks.","PeriodicalId":220599,"journal":{"name":"2022 International Conference on System Science and Engineering (ICSSE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and prototyping of a low-cost light weight fixed-endpoint orientation planar Cobot\",\"authors\":\"I. Howard\",\"doi\":\"10.1109/ICSSE55923.2022.9947353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we present the design and construction of a low-cost planar robotic arm that makes use of light weight component and a passive link mechanism to maintain fixed endpoint orientation. The arm structure itself is low-cost and built from carbon fiber tubes which yields a high stiffness to weight ratio. To facilitate construction, commercially available pulley and bearing components are used in the design where possible and all custom mechanical parts are 3D printed. To reduce power consumption, the arm makes use of non-back-drivable worm-gear motor actuation, so static arm configurations can be maintained without requiring motor power. We first analyze and simulate the kinematics and the static torque/force relationships of the mechanism. A microcontroller system was then developed to read the sensors and drive the arm motors. Finally, we demonstrate arm operation with simple movement tasks.\",\"PeriodicalId\":220599,\"journal\":{\"name\":\"2022 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE55923.2022.9947353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE55923.2022.9947353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种低成本的平面机械臂的设计和构造,该机械臂利用轻量化部件和无源连杆机构来保持固定的端点方向。手臂结构本身是低成本的,由碳纤维管制成,具有很高的刚度与重量比。为了便于施工,在设计中尽可能使用市售滑轮和轴承组件,所有定制的机械部件都是3D打印的。为了降低功耗,手臂采用非反向驱动的蜗轮电机驱动,因此可以在不需要电机动力的情况下保持静态手臂配置。首先分析和模拟了机构的运动学和静态扭矩/力关系。然后开发了一个微控制器系统来读取传感器并驱动手臂电机。最后,我们用简单的运动任务演示手臂操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and prototyping of a low-cost light weight fixed-endpoint orientation planar Cobot
Here we present the design and construction of a low-cost planar robotic arm that makes use of light weight component and a passive link mechanism to maintain fixed endpoint orientation. The arm structure itself is low-cost and built from carbon fiber tubes which yields a high stiffness to weight ratio. To facilitate construction, commercially available pulley and bearing components are used in the design where possible and all custom mechanical parts are 3D printed. To reduce power consumption, the arm makes use of non-back-drivable worm-gear motor actuation, so static arm configurations can be maintained without requiring motor power. We first analyze and simulate the kinematics and the static torque/force relationships of the mechanism. A microcontroller system was then developed to read the sensors and drive the arm motors. Finally, we demonstrate arm operation with simple movement tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信