阿贝尔周期,部分词,以及Fine和Wilf定理的推广

F. Blanchet-Sadri, S. Simmons, Amelia Tebbe, A. Veprauskas
{"title":"阿贝尔周期,部分词,以及Fine和Wilf定理的推广","authors":"F. Blanchet-Sadri, S. Simmons, Amelia Tebbe, A. Veprauskas","doi":"10.1051/ita/2013034","DOIUrl":null,"url":null,"abstract":"Recently, Constantinescu and Ilie proved a variant of the wellknown periodicity theorem of Fine and Wilf in the case of two relatively prime abelian periods and conjectured a result for the case of two nonrelatively prime abelian periods. In this paper, we answer some open problems they suggested. We show that their conjecture is false but we give bounds, that depend on the two abelian periods, such that the conjecture is true for all words having length at least those bounds and show that some of them are optimal. We also extend their study to the context of partial words, giving optimal lengths and describing an algorithm for constructing optimal words.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Abelian periods, partial words, and an extension of a theorem of Fine and Wilf\",\"authors\":\"F. Blanchet-Sadri, S. Simmons, Amelia Tebbe, A. Veprauskas\",\"doi\":\"10.1051/ita/2013034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Constantinescu and Ilie proved a variant of the wellknown periodicity theorem of Fine and Wilf in the case of two relatively prime abelian periods and conjectured a result for the case of two nonrelatively prime abelian periods. In this paper, we answer some open problems they suggested. We show that their conjecture is false but we give bounds, that depend on the two abelian periods, such that the conjecture is true for all words having length at least those bounds and show that some of them are optimal. We also extend their study to the context of partial words, giving optimal lengths and describing an algorithm for constructing optimal words.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2013034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2013034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

最近,Constantinescu和Ilie在两个相对素数阿贝尔周期的情况下证明了Fine和Wilf的周期性定理的一个变体,并推测了两个非相对素数阿贝尔周期的结果。在本文中,我们回答了他们提出的一些开放性问题。我们证明了他们的猜想是假的,但是我们给出了依赖于两个阿贝尔周期的范围,使得这个猜想对于长度至少在这些范围内的所有单词都是正确的,并且表明其中一些是最优的。我们还将他们的研究扩展到部分单词的上下文,给出了最佳长度并描述了构建最佳单词的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian periods, partial words, and an extension of a theorem of Fine and Wilf
Recently, Constantinescu and Ilie proved a variant of the wellknown periodicity theorem of Fine and Wilf in the case of two relatively prime abelian periods and conjectured a result for the case of two nonrelatively prime abelian periods. In this paper, we answer some open problems they suggested. We show that their conjecture is false but we give bounds, that depend on the two abelian periods, such that the conjecture is true for all words having length at least those bounds and show that some of them are optimal. We also extend their study to the context of partial words, giving optimal lengths and describing an algorithm for constructing optimal words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信