{"title":"基于标记跟踪的姿态估计精度预测","authors":"Larry S. Davis, E. Clarkson, J. Rolland","doi":"10.1109/ISMAR.2003.1240685","DOIUrl":null,"url":null,"abstract":"Tracking is a necessity for interactive virtual environments. Marker-based tracking solutions involve the placement of fiducials in a rigid configuration on the object(s) to be tracked, called a tracking probe. The realization that tracking performance is linked to probe performance necessitates investigation into the design of tracking probes for proponents of marker-based tracking. A challenge involved with probe design is predicting the accuracy of a tracking probe. We present a method for predicting the accuracy of a tracking probe based upon a first-order propagation of the errors associated with the markers on the probe. Results for two sample tracking probes show excellent agreement between measured and predicted errors.","PeriodicalId":296266,"journal":{"name":"The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Predicting accuracy in pose estimation for marker-based tracking\",\"authors\":\"Larry S. Davis, E. Clarkson, J. Rolland\",\"doi\":\"10.1109/ISMAR.2003.1240685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking is a necessity for interactive virtual environments. Marker-based tracking solutions involve the placement of fiducials in a rigid configuration on the object(s) to be tracked, called a tracking probe. The realization that tracking performance is linked to probe performance necessitates investigation into the design of tracking probes for proponents of marker-based tracking. A challenge involved with probe design is predicting the accuracy of a tracking probe. We present a method for predicting the accuracy of a tracking probe based upon a first-order propagation of the errors associated with the markers on the probe. Results for two sample tracking probes show excellent agreement between measured and predicted errors.\",\"PeriodicalId\":296266,\"journal\":{\"name\":\"The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings.\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2003.1240685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2003.1240685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting accuracy in pose estimation for marker-based tracking
Tracking is a necessity for interactive virtual environments. Marker-based tracking solutions involve the placement of fiducials in a rigid configuration on the object(s) to be tracked, called a tracking probe. The realization that tracking performance is linked to probe performance necessitates investigation into the design of tracking probes for proponents of marker-based tracking. A challenge involved with probe design is predicting the accuracy of a tracking probe. We present a method for predicting the accuracy of a tracking probe based upon a first-order propagation of the errors associated with the markers on the probe. Results for two sample tracking probes show excellent agreement between measured and predicted errors.