南亚语言多语言文本-语音的统一音系表征

Isin Demirsahin, Martin Jansche, Alexander Gutkin
{"title":"南亚语言多语言文本-语音的统一音系表征","authors":"Isin Demirsahin, Martin Jansche, Alexander Gutkin","doi":"10.21437/SLTU.2018-17","DOIUrl":null,"url":null,"abstract":"We present a multilingual phoneme inventory and inclusion mappings from the native inventories of several major South Asian languages for multilingual parametric text-to-speech synthesis (TTS). Our goal is to reduce the need for training data when building new TTS voices by leveraging available data for similar languages within a common feature design. For West Bengali, Gujarati, Kannada, Malayalam, Marathi, Tamil, Tel-ugu, and Urdu we compare TTS voices trained only on monolingual data with voices trained on multilingual data from 12 languages. In subjective evaluations multilingually trained voices outperform (or in a few cases are statistically tied with) the corresponding monolingual voices. The multilingual setup can further be used to synthesize speech for languages not seen in the training data; preliminary evaluations lean towards good. Our results indicate that pooling data from different languages in a single acoustic model can be beneficial, opening up new uses and research questions.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Unified Phonological Representation of South Asian Languages for Multilingual Text-to-Speech\",\"authors\":\"Isin Demirsahin, Martin Jansche, Alexander Gutkin\",\"doi\":\"10.21437/SLTU.2018-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multilingual phoneme inventory and inclusion mappings from the native inventories of several major South Asian languages for multilingual parametric text-to-speech synthesis (TTS). Our goal is to reduce the need for training data when building new TTS voices by leveraging available data for similar languages within a common feature design. For West Bengali, Gujarati, Kannada, Malayalam, Marathi, Tamil, Tel-ugu, and Urdu we compare TTS voices trained only on monolingual data with voices trained on multilingual data from 12 languages. In subjective evaluations multilingually trained voices outperform (or in a few cases are statistically tied with) the corresponding monolingual voices. The multilingual setup can further be used to synthesize speech for languages not seen in the training data; preliminary evaluations lean towards good. Our results indicate that pooling data from different languages in a single acoustic model can be beneficial, opening up new uses and research questions.\",\"PeriodicalId\":190269,\"journal\":{\"name\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SLTU.2018-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们提出了一个多语言音素清单和包含映射,来自几种主要南亚语言的本地清单,用于多语言参数文本到语音合成(TTS)。我们的目标是在构建新的TTS语音时,通过利用公共功能设计中类似语言的可用数据来减少对训练数据的需求。对于西孟加拉语、古吉拉特语、卡纳达语、马拉雅拉姆语、马拉地语、泰米尔语、特尔乌古语和乌尔都语,我们比较了仅在单语言数据上训练的TTS语音与在12种语言的多语言数据上训练的语音。在主观评价中,多语言训练的声音比相应的单语言声音表现得更好(或者在少数情况下在统计上与之并列)。多语言设置可以进一步用于合成训练数据中未出现的语言的语音;初步评价倾向于良好。我们的研究结果表明,在单一声学模型中汇集不同语言的数据是有益的,开辟了新的用途和研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Phonological Representation of South Asian Languages for Multilingual Text-to-Speech
We present a multilingual phoneme inventory and inclusion mappings from the native inventories of several major South Asian languages for multilingual parametric text-to-speech synthesis (TTS). Our goal is to reduce the need for training data when building new TTS voices by leveraging available data for similar languages within a common feature design. For West Bengali, Gujarati, Kannada, Malayalam, Marathi, Tamil, Tel-ugu, and Urdu we compare TTS voices trained only on monolingual data with voices trained on multilingual data from 12 languages. In subjective evaluations multilingually trained voices outperform (or in a few cases are statistically tied with) the corresponding monolingual voices. The multilingual setup can further be used to synthesize speech for languages not seen in the training data; preliminary evaluations lean towards good. Our results indicate that pooling data from different languages in a single acoustic model can be beneficial, opening up new uses and research questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信