E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, A. Sonato
{"title":"用于生物传感的紧凑型高灵敏度等离子体芯片实验室的高通量制造和校准","authors":"E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, A. Sonato","doi":"10.1515/optof-2016-0002","DOIUrl":null,"url":null,"abstract":"Abstract Surface plasmon resonance biosensors have recently known a rapid diffusion in the biological field and a large variety of sensor configurations is currently available. Biological applications are increasingly demanding sensor miniaturization, multiple detection in parallel, temperature-controlled environment and high sensitivity. Indeed, versatile and tunable sensing platforms, together with an accurate biological environment monitoring, could improve the realization of custom biosensing devices applicable to different biological reactions. Here we propose a smart and high throughput fabrication protocol for the realization of a custommicrofluidic plasmonic biochip that could be easily tuned and modified to address different biological applications. The sensor chip here presented shows a high sensing capability, monitored by an accurate signal calibration in the presence of concentration and temperature variation.","PeriodicalId":144806,"journal":{"name":"Optofluidics, Microfluidics and Nanofluidics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing\",\"authors\":\"E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, A. Sonato\",\"doi\":\"10.1515/optof-2016-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surface plasmon resonance biosensors have recently known a rapid diffusion in the biological field and a large variety of sensor configurations is currently available. Biological applications are increasingly demanding sensor miniaturization, multiple detection in parallel, temperature-controlled environment and high sensitivity. Indeed, versatile and tunable sensing platforms, together with an accurate biological environment monitoring, could improve the realization of custom biosensing devices applicable to different biological reactions. Here we propose a smart and high throughput fabrication protocol for the realization of a custommicrofluidic plasmonic biochip that could be easily tuned and modified to address different biological applications. The sensor chip here presented shows a high sensing capability, monitored by an accurate signal calibration in the presence of concentration and temperature variation.\",\"PeriodicalId\":144806,\"journal\":{\"name\":\"Optofluidics, Microfluidics and Nanofluidics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optofluidics, Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/optof-2016-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optofluidics, Microfluidics and Nanofluidics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/optof-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing
Abstract Surface plasmon resonance biosensors have recently known a rapid diffusion in the biological field and a large variety of sensor configurations is currently available. Biological applications are increasingly demanding sensor miniaturization, multiple detection in parallel, temperature-controlled environment and high sensitivity. Indeed, versatile and tunable sensing platforms, together with an accurate biological environment monitoring, could improve the realization of custom biosensing devices applicable to different biological reactions. Here we propose a smart and high throughput fabrication protocol for the realization of a custommicrofluidic plasmonic biochip that could be easily tuned and modified to address different biological applications. The sensor chip here presented shows a high sensing capability, monitored by an accurate signal calibration in the presence of concentration and temperature variation.