畸变对MDL模型的影响

Yoram Gronich, R. Zamir
{"title":"畸变对MDL模型的影响","authors":"Yoram Gronich, R. Zamir","doi":"10.1109/ITW.2001.955169","DOIUrl":null,"url":null,"abstract":"We investigate the consequences of lossy compression, i.e., description with distortion, on the model selection of the minimum description length (MDL) criterion. Our basic observation is that for a finite data sequence and sufficiently large distortion, a two-stage universal lossy encoder tends to under-estimate the model order of the source. We demonstrate this property by examining the behavior of a two-stage universal lossy encoder, based on pre/post-filtered entropy-coded dithered quantization, over some parametric classes of stationary Gaussian sources.","PeriodicalId":288814,"journal":{"name":"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of distortion on the MDL model\",\"authors\":\"Yoram Gronich, R. Zamir\",\"doi\":\"10.1109/ITW.2001.955169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the consequences of lossy compression, i.e., description with distortion, on the model selection of the minimum description length (MDL) criterion. Our basic observation is that for a finite data sequence and sufficiently large distortion, a two-stage universal lossy encoder tends to under-estimate the model order of the source. We demonstrate this property by examining the behavior of a two-stage universal lossy encoder, based on pre/post-filtered entropy-coded dithered quantization, over some parametric classes of stationary Gaussian sources.\",\"PeriodicalId\":288814,\"journal\":{\"name\":\"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2001.955169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2001.955169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了有损压缩的后果,即具有失真的描述,对最小描述长度(MDL)标准的模型选择。我们的基本观察是,对于有限的数据序列和足够大的失真,两级通用有损编码器倾向于低估源的模型阶数。我们通过检查基于前/后滤波熵编码抖动量化的两级通用有损编码器的行为来证明这一性质,该编码器在一些平稳高斯源的参数类上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of distortion on the MDL model
We investigate the consequences of lossy compression, i.e., description with distortion, on the model selection of the minimum description length (MDL) criterion. Our basic observation is that for a finite data sequence and sufficiently large distortion, a two-stage universal lossy encoder tends to under-estimate the model order of the source. We demonstrate this property by examining the behavior of a two-stage universal lossy encoder, based on pre/post-filtered entropy-coded dithered quantization, over some parametric classes of stationary Gaussian sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信