三角形bsamizier曲面的近似隐式化

O. Barrowclough, T. Dokken
{"title":"三角形bsamizier曲面的近似隐式化","authors":"O. Barrowclough, T. Dokken","doi":"10.1145/1925059.1925084","DOIUrl":null,"url":null,"abstract":"We discuss how Dokken's methods of approximate implicitization can be applied to triangular Bézier surfaces in both the original and weak forms. The matrices D and M that are fundamental to the respective forms of approximate implicitization are shown to be constructed essentially by repeated multiplication of polynomials and by matrix multiplication. A numerical approach to weak approximate implicitization is also considered and we show that symmetries within this algorithm can be exploited to reduce the computation time of M. Explicit examples are presented to compare the methods and to demonstrate properties of the approximations.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Approximate implicitization of triangular Bézier surfaces\",\"authors\":\"O. Barrowclough, T. Dokken\",\"doi\":\"10.1145/1925059.1925084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss how Dokken's methods of approximate implicitization can be applied to triangular Bézier surfaces in both the original and weak forms. The matrices D and M that are fundamental to the respective forms of approximate implicitization are shown to be constructed essentially by repeated multiplication of polynomials and by matrix multiplication. A numerical approach to weak approximate implicitization is also considered and we show that symmetries within this algorithm can be exploited to reduce the computation time of M. Explicit examples are presented to compare the methods and to demonstrate properties of the approximations.\",\"PeriodicalId\":235681,\"journal\":{\"name\":\"Spring conference on Computer graphics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spring conference on Computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1925059.1925084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1925059.1925084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们讨论了如何将Dokken的近似隐式化方法应用于原始形式和弱形式的三角形bsamizier曲面。矩阵D和M是近似隐式化各自形式的基础,它们本质上是由多项式的重复乘法和矩阵乘法构造的。我们还考虑了一种弱近似隐式化的数值方法,并证明了该算法中的对称性可以用来减少m的计算时间。显式的例子给出了比较方法和证明近似的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate implicitization of triangular Bézier surfaces
We discuss how Dokken's methods of approximate implicitization can be applied to triangular Bézier surfaces in both the original and weak forms. The matrices D and M that are fundamental to the respective forms of approximate implicitization are shown to be constructed essentially by repeated multiplication of polynomials and by matrix multiplication. A numerical approach to weak approximate implicitization is also considered and we show that symmetries within this algorithm can be exploited to reduce the computation time of M. Explicit examples are presented to compare the methods and to demonstrate properties of the approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信