一种考虑SIMD指令的集成电路分解预处理新填充策略

T. Iwashita, Naokazu Takemura, Akihiro Ida, H. Nakashima
{"title":"一种考虑SIMD指令的集成电路分解预处理新填充策略","authors":"T. Iwashita, Naokazu Takemura, Akihiro Ida, H. Nakashima","doi":"10.1109/Trustcom.2015.610","DOIUrl":null,"url":null,"abstract":"Most of current processors are equipped with single instruction multiple data (SIMD) instructions that are used to increase the performance of application programs. In this paper, we analyze the effective use of SIMD instructions in the Incomplete Cholesky (IC) preconditioned Conjugate Gradient (CG) solver, which we employ in a variety of simulations. A new fill-in strategy in the IC factorization is proposed for the SIMD vectorization of the preconditioning step and to increase the convergence rate. Our numerical results confirm that the proposed method has better solver performance than the conventional IC(0)-CG method.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Fill-in Strategy for IC Factorization Preconditioning Considering SIMD Instructions\",\"authors\":\"T. Iwashita, Naokazu Takemura, Akihiro Ida, H. Nakashima\",\"doi\":\"10.1109/Trustcom.2015.610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of current processors are equipped with single instruction multiple data (SIMD) instructions that are used to increase the performance of application programs. In this paper, we analyze the effective use of SIMD instructions in the Incomplete Cholesky (IC) preconditioned Conjugate Gradient (CG) solver, which we employ in a variety of simulations. A new fill-in strategy in the IC factorization is proposed for the SIMD vectorization of the preconditioning step and to increase the convergence rate. Our numerical results confirm that the proposed method has better solver performance than the conventional IC(0)-CG method.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom.2015.610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当前大多数处理器都配备了单指令多数据(SIMD)指令,用于提高应用程序的性能。在本文中,我们分析了SIMD指令在不完全Cholesky (IC)预条件共轭梯度(CG)解算器中的有效使用,我们在各种模拟中使用了该解算器。提出了一种新的IC分解填充策略,用于预处理步骤的SIMD矢量化,提高了收敛速度。数值结果表明,该方法比传统的IC(0)-CG方法具有更好的求解性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Fill-in Strategy for IC Factorization Preconditioning Considering SIMD Instructions
Most of current processors are equipped with single instruction multiple data (SIMD) instructions that are used to increase the performance of application programs. In this paper, we analyze the effective use of SIMD instructions in the Incomplete Cholesky (IC) preconditioned Conjugate Gradient (CG) solver, which we employ in a variety of simulations. A new fill-in strategy in the IC factorization is proposed for the SIMD vectorization of the preconditioning step and to increase the convergence rate. Our numerical results confirm that the proposed method has better solver performance than the conventional IC(0)-CG method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信