通过电子邮件网络分析自动社会等级检测

Ryan Rowe, Germán G. Creamer, Shlomo Hershkop, S. Stolfo
{"title":"通过电子邮件网络分析自动社会等级检测","authors":"Ryan Rowe, Germán G. Creamer, Shlomo Hershkop, S. Stolfo","doi":"10.1145/1348549.1348562","DOIUrl":null,"url":null,"abstract":"This paper provides a novel algorithm for automatically extracting social hierarchy data from electronic communication behavior. The algorithm is based on data mining user behaviors to automatically analyze and catalog patterns of communications between entities in a email collection to extract social standing. The advantage to such automatic methods is that they extract relevancy between hierarchy levels and are dynamic over time.\n We illustrate the algorithms over real world data using the Enron corporation's email archive. The results show great promise when compared to the corporations work chart and judicial proceeding analyzing the major players.","PeriodicalId":227549,"journal":{"name":"Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis - WebKDD/SNA-KDD '07","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":"{\"title\":\"Automated social hierarchy detection through email network analysis\",\"authors\":\"Ryan Rowe, Germán G. Creamer, Shlomo Hershkop, S. Stolfo\",\"doi\":\"10.1145/1348549.1348562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a novel algorithm for automatically extracting social hierarchy data from electronic communication behavior. The algorithm is based on data mining user behaviors to automatically analyze and catalog patterns of communications between entities in a email collection to extract social standing. The advantage to such automatic methods is that they extract relevancy between hierarchy levels and are dynamic over time.\\n We illustrate the algorithms over real world data using the Enron corporation's email archive. The results show great promise when compared to the corporations work chart and judicial proceeding analyzing the major players.\",\"PeriodicalId\":227549,\"journal\":{\"name\":\"Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis - WebKDD/SNA-KDD '07\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"154\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis - WebKDD/SNA-KDD '07\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1348549.1348562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis - WebKDD/SNA-KDD '07","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1348549.1348562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

摘要

本文提出了一种从电子通信行为中自动提取社会等级数据的新算法。该算法基于数据挖掘用户行为,自动分析和分类电子邮件集合中实体之间的通信模式,以提取社会地位。这种自动方法的优点是它们提取层次结构级别之间的相关性,并且随着时间的推移是动态的。我们使用安然公司的电子邮件档案在真实世界的数据上说明算法。与公司工作图和分析主要参与者的司法程序相比较,结果显示出很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated social hierarchy detection through email network analysis
This paper provides a novel algorithm for automatically extracting social hierarchy data from electronic communication behavior. The algorithm is based on data mining user behaviors to automatically analyze and catalog patterns of communications between entities in a email collection to extract social standing. The advantage to such automatic methods is that they extract relevancy between hierarchy levels and are dynamic over time. We illustrate the algorithms over real world data using the Enron corporation's email archive. The results show great promise when compared to the corporations work chart and judicial proceeding analyzing the major players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信