基于神经转换的依赖分析中的关联度量

Patricia Fischer, Sebastian Pütz, Daniël de Kok
{"title":"基于神经转换的依赖分析中的关联度量","authors":"Patricia Fischer, Sebastian Pütz, Daniël de Kok","doi":"10.18653/v1/W19-7722","DOIUrl":null,"url":null,"abstract":"Lexical preferences encoded as association metrics have been shown to improve performance on structural ambiguities that are still challenging for modern parsers. This paper introduces a mechanism to include lexical preferences into a neural transition-based dependency parser for German. We compare pointwise mutual information (PMI) and embedding-based scores. Both the PMI-based model and the embedding-based model outperform the baseline significantly. The best model is PMI-based and increases overall performance by 0.26 LAS points over the baseline.","PeriodicalId":443459,"journal":{"name":"Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Association Metrics in Neural Transition-Based Dependency Parsing\",\"authors\":\"Patricia Fischer, Sebastian Pütz, Daniël de Kok\",\"doi\":\"10.18653/v1/W19-7722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lexical preferences encoded as association metrics have been shown to improve performance on structural ambiguities that are still challenging for modern parsers. This paper introduces a mechanism to include lexical preferences into a neural transition-based dependency parser for German. We compare pointwise mutual information (PMI) and embedding-based scores. Both the PMI-based model and the embedding-based model outperform the baseline significantly. The best model is PMI-based and increases overall performance by 0.26 LAS points over the baseline.\",\"PeriodicalId\":443459,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-7722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-7722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为关联度量编码的词法首选项已被证明可以提高处理结构歧义的性能,而结构歧义对于现代解析器来说仍然是一个挑战。本文介绍了一种将词法偏好包含到基于神经转换的德语依赖解析器中的机制。我们比较了点互信息(PMI)和基于嵌入的分数。基于pmi的模型和基于嵌入的模型都明显优于基线。最好的模型是基于pmi的,总体性能比基线提高了0.26 LAS点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association Metrics in Neural Transition-Based Dependency Parsing
Lexical preferences encoded as association metrics have been shown to improve performance on structural ambiguities that are still challenging for modern parsers. This paper introduces a mechanism to include lexical preferences into a neural transition-based dependency parser for German. We compare pointwise mutual information (PMI) and embedding-based scores. Both the PMI-based model and the embedding-based model outperform the baseline significantly. The best model is PMI-based and increases overall performance by 0.26 LAS points over the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信