{"title":"二维分布式数据中的隐私保护分类","authors":"Luong The Dung, H. Bao, Nguyễn Thế Bình, T. Hoang","doi":"10.1109/KSE.2010.38","DOIUrl":null,"url":null,"abstract":"Within the context of privacy preserving data mining, several solutions for privacy-preserving classification rules learning such as association rules mining have been proposed. Each solution was provided for horizontally or vertically distributed scenario. The aim of this work is to study privacy-preserving classification rules learning in two-dimension distributed data, which is a generalisation of both horizontally and vertically distributed data. In this paper, we develop a cryptographic solution for classification rules learning methods. The crucial step in the proposed solution is the privacy-preserving computation of frequencies of a tuple of values, which can ensure each participant's privacy without loss of accuracy. We illustrate the applicability of the method by using it to build the privacy preserving protocol for association rules mining and ID3 decision tree learning","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Privacy Preserving Classification in Two-Dimension Distributed Data\",\"authors\":\"Luong The Dung, H. Bao, Nguyễn Thế Bình, T. Hoang\",\"doi\":\"10.1109/KSE.2010.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the context of privacy preserving data mining, several solutions for privacy-preserving classification rules learning such as association rules mining have been proposed. Each solution was provided for horizontally or vertically distributed scenario. The aim of this work is to study privacy-preserving classification rules learning in two-dimension distributed data, which is a generalisation of both horizontally and vertically distributed data. In this paper, we develop a cryptographic solution for classification rules learning methods. The crucial step in the proposed solution is the privacy-preserving computation of frequencies of a tuple of values, which can ensure each participant's privacy without loss of accuracy. We illustrate the applicability of the method by using it to build the privacy preserving protocol for association rules mining and ID3 decision tree learning\",\"PeriodicalId\":158823,\"journal\":{\"name\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2010.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Privacy Preserving Classification in Two-Dimension Distributed Data
Within the context of privacy preserving data mining, several solutions for privacy-preserving classification rules learning such as association rules mining have been proposed. Each solution was provided for horizontally or vertically distributed scenario. The aim of this work is to study privacy-preserving classification rules learning in two-dimension distributed data, which is a generalisation of both horizontally and vertically distributed data. In this paper, we develop a cryptographic solution for classification rules learning methods. The crucial step in the proposed solution is the privacy-preserving computation of frequencies of a tuple of values, which can ensure each participant's privacy without loss of accuracy. We illustrate the applicability of the method by using it to build the privacy preserving protocol for association rules mining and ID3 decision tree learning