多光谱图像压缩算法

T. Markas, J. Reif
{"title":"多光谱图像压缩算法","authors":"T. Markas, J. Reif","doi":"10.1109/DCC.1993.253110","DOIUrl":null,"url":null,"abstract":"This paper presents a data compression algorithm capable of significantly reducing the amounts of information contained in multispectral and hyperspectral images. The loss of information ranges from a perceptually lossless level, achieved at 20-30:1 compression ratios, to a one where exploitation of the images is still possible (over 100:1 ratios). A one-dimensional transform coder removes the spectral redundancy, and a two-dimensional wavelet transform removes the spatial redundancy of multispectral images. The transformed images are subsequently divided into active regions that contain significant wavelet coefficients. Each active block is then hierarchically encoded using multidimensional bitmap trees. Application of reversible histogram equalization methods on the spectral bands can significantly increase the compression/distortion performance. Landsat Thematic Mapper data are used to illustrate the performance of the proposed algorithm.<<ETX>>","PeriodicalId":315077,"journal":{"name":"[Proceedings] DCC `93: Data Compression Conference","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Multispectral image compression algorithms\",\"authors\":\"T. Markas, J. Reif\",\"doi\":\"10.1109/DCC.1993.253110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a data compression algorithm capable of significantly reducing the amounts of information contained in multispectral and hyperspectral images. The loss of information ranges from a perceptually lossless level, achieved at 20-30:1 compression ratios, to a one where exploitation of the images is still possible (over 100:1 ratios). A one-dimensional transform coder removes the spectral redundancy, and a two-dimensional wavelet transform removes the spatial redundancy of multispectral images. The transformed images are subsequently divided into active regions that contain significant wavelet coefficients. Each active block is then hierarchically encoded using multidimensional bitmap trees. Application of reversible histogram equalization methods on the spectral bands can significantly increase the compression/distortion performance. Landsat Thematic Mapper data are used to illustrate the performance of the proposed algorithm.<<ETX>>\",\"PeriodicalId\":315077,\"journal\":{\"name\":\"[Proceedings] DCC `93: Data Compression Conference\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] DCC `93: Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1993.253110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] DCC `93: Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1993.253110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

本文提出了一种能够显著减少多光谱和高光谱图像中包含的信息量的数据压缩算法。信息的损失范围从感知上的无损水平(在20-30:1的压缩比下实现)到仍然可以利用图像的水平(超过100:1的比例)。一维变换编码器去除光谱冗余,二维小波变换去除多光谱图像的空间冗余。变换后的图像随后被划分为含有显著小波系数的活动区域。然后使用多维位图树对每个活动块进行分层编码。在谱带上应用可逆直方图均衡化方法可以显著提高压缩/失真性能。使用Landsat专题地图数据来说明所提出算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral image compression algorithms
This paper presents a data compression algorithm capable of significantly reducing the amounts of information contained in multispectral and hyperspectral images. The loss of information ranges from a perceptually lossless level, achieved at 20-30:1 compression ratios, to a one where exploitation of the images is still possible (over 100:1 ratios). A one-dimensional transform coder removes the spectral redundancy, and a two-dimensional wavelet transform removes the spatial redundancy of multispectral images. The transformed images are subsequently divided into active regions that contain significant wavelet coefficients. Each active block is then hierarchically encoded using multidimensional bitmap trees. Application of reversible histogram equalization methods on the spectral bands can significantly increase the compression/distortion performance. Landsat Thematic Mapper data are used to illustrate the performance of the proposed algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信