一个可解释的注意力引导虹膜呈现攻击检测器

Cunjian Chen, A. Ross
{"title":"一个可解释的注意力引导虹膜呈现攻击检测器","authors":"Cunjian Chen, A. Ross","doi":"10.1109/WACVW52041.2021.00015","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) are being increasingly used to address the problem of iris presentation attack detection. In this work, we propose an explainable attention-guided iris presentation attack detector (AG-PAD) to augment CNNs with attention mechanisms and to provide visual explanations of model predictions. Two types of attention modules are independently placed on top of the last convolutional layer of the backbone network. Specifically, the channel attention module is used to model the inter-channel relationship between features, while the position attention module is used to model inter-spatial relationship between features. An element-wise sum is employed to fuse these two attention modules. Further, a novel hierarchical attention mechanism is introduced. Experiments involving both a JHU-APL proprietary dataset and the benchmark LivDet-Iris-2017 dataset suggest that the proposed method achieves promising detection results while explaining occurrences of salient regions for discriminative feature learning. To the best of our knowledge, this is the first work that exploits the use of attention mechanisms in iris presentation attack detection.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An Explainable Attention-Guided Iris Presentation Attack Detector\",\"authors\":\"Cunjian Chen, A. Ross\",\"doi\":\"10.1109/WACVW52041.2021.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) are being increasingly used to address the problem of iris presentation attack detection. In this work, we propose an explainable attention-guided iris presentation attack detector (AG-PAD) to augment CNNs with attention mechanisms and to provide visual explanations of model predictions. Two types of attention modules are independently placed on top of the last convolutional layer of the backbone network. Specifically, the channel attention module is used to model the inter-channel relationship between features, while the position attention module is used to model inter-spatial relationship between features. An element-wise sum is employed to fuse these two attention modules. Further, a novel hierarchical attention mechanism is introduced. Experiments involving both a JHU-APL proprietary dataset and the benchmark LivDet-Iris-2017 dataset suggest that the proposed method achieves promising detection results while explaining occurrences of salient regions for discriminative feature learning. To the best of our knowledge, this is the first work that exploits the use of attention mechanisms in iris presentation attack detection.\",\"PeriodicalId\":313062,\"journal\":{\"name\":\"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW52041.2021.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

卷积神经网络(cnn)越来越多地用于解决虹膜呈现攻击检测问题。在这项工作中,我们提出了一个可解释的注意力引导虹膜呈现攻击检测器(AG-PAD)来增强cnn的注意力机制,并提供模型预测的视觉解释。两种类型的注意力模块被独立地放置在主干网的最后一个卷积层的顶部。其中,通道注意模块用于特征间通道关系建模,位置注意模块用于特征间空间关系建模。我们使用元素求和来融合这两个注意力模块。在此基础上,提出了一种新的分层注意机制。涉及JHU-APL专有数据集和基准LivDet-Iris-2017数据集的实验表明,所提出的方法在解释显著区域的出现以进行判别特征学习的同时取得了很好的检测结果。据我们所知,这是第一个在虹膜呈现攻击检测中利用注意机制的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Explainable Attention-Guided Iris Presentation Attack Detector
Convolutional Neural Networks (CNNs) are being increasingly used to address the problem of iris presentation attack detection. In this work, we propose an explainable attention-guided iris presentation attack detector (AG-PAD) to augment CNNs with attention mechanisms and to provide visual explanations of model predictions. Two types of attention modules are independently placed on top of the last convolutional layer of the backbone network. Specifically, the channel attention module is used to model the inter-channel relationship between features, while the position attention module is used to model inter-spatial relationship between features. An element-wise sum is employed to fuse these two attention modules. Further, a novel hierarchical attention mechanism is introduced. Experiments involving both a JHU-APL proprietary dataset and the benchmark LivDet-Iris-2017 dataset suggest that the proposed method achieves promising detection results while explaining occurrences of salient regions for discriminative feature learning. To the best of our knowledge, this is the first work that exploits the use of attention mechanisms in iris presentation attack detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信