基于玻璃的3D封装架构与嵌入式芯片的高性能计算演示

Siddharth Ravichandran, V. Smet, Madhavan Swaminathan, R. Tummala
{"title":"基于玻璃的3D封装架构与嵌入式芯片的高性能计算演示","authors":"Siddharth Ravichandran, V. Smet, Madhavan Swaminathan, R. Tummala","doi":"10.1109/ectc51906.2022.00180","DOIUrl":null,"url":null,"abstract":"This paper presents a technology demonstration of two novel 3D glass-based architectures for high performance computing applications. Current 3D technologies are limited by Through Silicon Vias (TSVs), and the proposed approached based on Glass Panel Embedding (GPE) eliminates TSVs resulting in a more robust 3D packaging platform that supports a variety of architectures. Two such architectures are designed and demonstrated in this paper. The first test vehicle shows multiple dies embedded and interconnected in a glass cavity, along with dies assembled on top using a microbump interface. The second test vehicle shows a 50x50 mm glass interposer package with 4 dies embedded in the core, 8 HBM emulators & 2 large SoCs assembled on top at 35 micron-bump pitch.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Demonstration of Glass-based 3D Package Architectures with Embedded Dies for High Performance Computing\",\"authors\":\"Siddharth Ravichandran, V. Smet, Madhavan Swaminathan, R. Tummala\",\"doi\":\"10.1109/ectc51906.2022.00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a technology demonstration of two novel 3D glass-based architectures for high performance computing applications. Current 3D technologies are limited by Through Silicon Vias (TSVs), and the proposed approached based on Glass Panel Embedding (GPE) eliminates TSVs resulting in a more robust 3D packaging platform that supports a variety of architectures. Two such architectures are designed and demonstrated in this paper. The first test vehicle shows multiple dies embedded and interconnected in a glass cavity, along with dies assembled on top using a microbump interface. The second test vehicle shows a 50x50 mm glass interposer package with 4 dies embedded in the core, 8 HBM emulators & 2 large SoCs assembled on top at 35 micron-bump pitch.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了两种新型的基于三维玻璃的高性能计算架构的技术演示。目前的3D技术受到硅通孔(tsv)的限制,而基于玻璃面板嵌入(GPE)的方法消除了tsv,从而形成了一个更强大的3D封装平台,支持各种架构。本文设计并演示了两个这样的体系结构。第一辆测试车展示了多个嵌在玻璃腔内并相互连接的模具,以及使用微碰撞接口组装在顶部的模具。第二辆测试车展示了一个50x50毫米的玻璃中间层封装,核心中嵌入了4个芯片,8个HBM模拟器和2个大型soc,顶部以35微米的凹凸间距组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of Glass-based 3D Package Architectures with Embedded Dies for High Performance Computing
This paper presents a technology demonstration of two novel 3D glass-based architectures for high performance computing applications. Current 3D technologies are limited by Through Silicon Vias (TSVs), and the proposed approached based on Glass Panel Embedding (GPE) eliminates TSVs resulting in a more robust 3D packaging platform that supports a variety of architectures. Two such architectures are designed and demonstrated in this paper. The first test vehicle shows multiple dies embedded and interconnected in a glass cavity, along with dies assembled on top using a microbump interface. The second test vehicle shows a 50x50 mm glass interposer package with 4 dies embedded in the core, 8 HBM emulators & 2 large SoCs assembled on top at 35 micron-bump pitch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信