{"title":"用于着色和渲染结构粒子系统的近似和概率算法","authors":"W. Reeves, R. Blau","doi":"10.1145/325334.325250","DOIUrl":null,"url":null,"abstract":"Detail enhances the visual richness and realism of computer-generated images. Our stochastic modelling approach, called particle systems, builds complex pictures from sets of simple, volume-filling primitives. For example, structured particle systems have been used to generate trees and a grass-covered forest floor. Particle systems can produce so much irregular, three-dimensional detail that exact shading and visible surface calculations become infeasible. We describe approximate and probabilistic algorithms for shading and the visible surface problem. Because particle systems algorithms generate richly-detailed images, it is hard to detect any deviation from an exact rendering. Recent work in stochastic modelling also enables us to model complex motions with random variation, such as a field of grass blowing in the breeze. We analyze the performance of our current algorithms to understand the costs of our stochastic modelling approach.","PeriodicalId":163416,"journal":{"name":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"525","resultStr":"{\"title\":\"Approximate and probabilistic algorithms for shading and rendering structured particle systems\",\"authors\":\"W. Reeves, R. Blau\",\"doi\":\"10.1145/325334.325250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detail enhances the visual richness and realism of computer-generated images. Our stochastic modelling approach, called particle systems, builds complex pictures from sets of simple, volume-filling primitives. For example, structured particle systems have been used to generate trees and a grass-covered forest floor. Particle systems can produce so much irregular, three-dimensional detail that exact shading and visible surface calculations become infeasible. We describe approximate and probabilistic algorithms for shading and the visible surface problem. Because particle systems algorithms generate richly-detailed images, it is hard to detect any deviation from an exact rendering. Recent work in stochastic modelling also enables us to model complex motions with random variation, such as a field of grass blowing in the breeze. We analyze the performance of our current algorithms to understand the costs of our stochastic modelling approach.\",\"PeriodicalId\":163416,\"journal\":{\"name\":\"Proceedings of the 12th annual conference on Computer graphics and interactive techniques\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"525\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/325334.325250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325334.325250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate and probabilistic algorithms for shading and rendering structured particle systems
Detail enhances the visual richness and realism of computer-generated images. Our stochastic modelling approach, called particle systems, builds complex pictures from sets of simple, volume-filling primitives. For example, structured particle systems have been used to generate trees and a grass-covered forest floor. Particle systems can produce so much irregular, three-dimensional detail that exact shading and visible surface calculations become infeasible. We describe approximate and probabilistic algorithms for shading and the visible surface problem. Because particle systems algorithms generate richly-detailed images, it is hard to detect any deviation from an exact rendering. Recent work in stochastic modelling also enables us to model complex motions with random variation, such as a field of grass blowing in the breeze. We analyze the performance of our current algorithms to understand the costs of our stochastic modelling approach.