{"title":"混合临界系统静态通信调度的综合","authors":"W. Steiner","doi":"10.1109/ISORCW.2011.12","DOIUrl":null,"url":null,"abstract":"Throughout many application areas of embedded and cyber-physical systems there is a demand to integrate more and more applications such that they share common resources. These applications may have different levels of criticality with respect to temporal or fault-tolerance properties and we call the result of their integration a mixed-criticality system. The communication network is a resource of particular importance and nowadays the system architecture is highly determined by a network's capabilities. A network for mixed-criticality systems has to establish partitioning such that the influence of messages from different applications on each other is bounded and the impact of low-critical messages on high-critical ones is minimized or removed at all. A straight forward way to establish network-wide partitioning is the time-triggered communication paradigm in which the communication schedule on the network is defined at design time and executed with respect to a globally synchronized time base. In this paper we discuss static scheduling methods for time-triggered traffic such that it can co-exist with non-time-triggered traffic. We introduce the concept of \"schedule porosity'' and show the impact of time-triggered traffic on unsynchronized traffic as a function of schedule porosity.","PeriodicalId":126022,"journal":{"name":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Synthesis of Static Communication Schedules for Mixed-Criticality Systems\",\"authors\":\"W. Steiner\",\"doi\":\"10.1109/ISORCW.2011.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Throughout many application areas of embedded and cyber-physical systems there is a demand to integrate more and more applications such that they share common resources. These applications may have different levels of criticality with respect to temporal or fault-tolerance properties and we call the result of their integration a mixed-criticality system. The communication network is a resource of particular importance and nowadays the system architecture is highly determined by a network's capabilities. A network for mixed-criticality systems has to establish partitioning such that the influence of messages from different applications on each other is bounded and the impact of low-critical messages on high-critical ones is minimized or removed at all. A straight forward way to establish network-wide partitioning is the time-triggered communication paradigm in which the communication schedule on the network is defined at design time and executed with respect to a globally synchronized time base. In this paper we discuss static scheduling methods for time-triggered traffic such that it can co-exist with non-time-triggered traffic. We introduce the concept of \\\"schedule porosity'' and show the impact of time-triggered traffic on unsynchronized traffic as a function of schedule porosity.\",\"PeriodicalId\":126022,\"journal\":{\"name\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORCW.2011.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Static Communication Schedules for Mixed-Criticality Systems
Throughout many application areas of embedded and cyber-physical systems there is a demand to integrate more and more applications such that they share common resources. These applications may have different levels of criticality with respect to temporal or fault-tolerance properties and we call the result of their integration a mixed-criticality system. The communication network is a resource of particular importance and nowadays the system architecture is highly determined by a network's capabilities. A network for mixed-criticality systems has to establish partitioning such that the influence of messages from different applications on each other is bounded and the impact of low-critical messages on high-critical ones is minimized or removed at all. A straight forward way to establish network-wide partitioning is the time-triggered communication paradigm in which the communication schedule on the network is defined at design time and executed with respect to a globally synchronized time base. In this paper we discuss static scheduling methods for time-triggered traffic such that it can co-exist with non-time-triggered traffic. We introduce the concept of "schedule porosity'' and show the impact of time-triggered traffic on unsynchronized traffic as a function of schedule porosity.