深度网络与树模型互补融合的ETA预测

Yurui Huang, Jie Zhang, HengDa Bao, Yang Yang, Jian Yang
{"title":"深度网络与树模型互补融合的ETA预测","authors":"Yurui Huang, Jie Zhang, HengDa Bao, Yang Yang, Jian Yang","doi":"10.1145/3474717.3488237","DOIUrl":null,"url":null,"abstract":"Estimated time of arrival (ETA) is a very important factor in the transportation system. It has attracted increasing attentions and has been widely used as a basic service in navigation systems and intelligent transportation systems. In this paper, we propose a novel solution to the ETA estimation problem, which is an ensemble on tree models and neural networks. We proved the accuracy and robustness of the solution on the A/B list and finally won first place in the SIGSPATIAL 2021 GISCUP competition.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complementary Fusion of Deep Network and Tree Model for ETA Prediction\",\"authors\":\"Yurui Huang, Jie Zhang, HengDa Bao, Yang Yang, Jian Yang\",\"doi\":\"10.1145/3474717.3488237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimated time of arrival (ETA) is a very important factor in the transportation system. It has attracted increasing attentions and has been widely used as a basic service in navigation systems and intelligent transportation systems. In this paper, we propose a novel solution to the ETA estimation problem, which is an ensemble on tree models and neural networks. We proved the accuracy and robustness of the solution on the A/B list and finally won first place in the SIGSPATIAL 2021 GISCUP competition.\",\"PeriodicalId\":340759,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474717.3488237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3488237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预计到达时间(ETA)是运输系统中一个非常重要的因素。它作为导航系统和智能交通系统的一项基础服务,越来越受到人们的关注和广泛应用。在本文中,我们提出了一种新的解决ETA估计问题的方法,即树模型和神经网络的集成。我们在A/B列表上证明了解决方案的准确性和鲁棒性,并最终在SIGSPATIAL 2021 GISCUP竞赛中获得第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complementary Fusion of Deep Network and Tree Model for ETA Prediction
Estimated time of arrival (ETA) is a very important factor in the transportation system. It has attracted increasing attentions and has been widely used as a basic service in navigation systems and intelligent transportation systems. In this paper, we propose a novel solution to the ETA estimation problem, which is an ensemble on tree models and neural networks. We proved the accuracy and robustness of the solution on the A/B list and finally won first place in the SIGSPATIAL 2021 GISCUP competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信