基于线性滤波预处理的多尺度排列熵解释改进

M. Jabloun, P. Ravier, O. Buttelli
{"title":"基于线性滤波预处理的多尺度排列熵解释改进","authors":"M. Jabloun, P. Ravier, O. Buttelli","doi":"10.1109/SSP53291.2023.10208030","DOIUrl":null,"url":null,"abstract":"Multi-scale permutation entropy (MPE) is an interesting tool for analyzing signal internal structures and quantifying complexity. The most commonly used MPEs involve a linear preprocessing step applied to the original signal prior to the evaluation of the permutation entropy (PE). However, recent research done by Davalos et al has demonstrated that linear filtering preprocessing significantly modifies the PE of Gaussian processes.To build on this work, we conducted a study to investigate the MPE’s behavior across a variety of signal generation models including sinusoidal signals, frequency modulated signals, and colored Gaussian noise. Our findings indicate that the MPE mainly reflects changes in the center frequency of the signal spectrum, independent of signal generation models. It’s important to note that the linear preprocessing step used in MPE calculations can lead to misinterpretation of the results. Therefore, we suggest that a proper interpretation of the MPE values should be done in conjunction with a spectral analysis or a time-frequency representation.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving of the interpretation of linear filtering preprocessing-based multiscale permutation entropy\",\"authors\":\"M. Jabloun, P. Ravier, O. Buttelli\",\"doi\":\"10.1109/SSP53291.2023.10208030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-scale permutation entropy (MPE) is an interesting tool for analyzing signal internal structures and quantifying complexity. The most commonly used MPEs involve a linear preprocessing step applied to the original signal prior to the evaluation of the permutation entropy (PE). However, recent research done by Davalos et al has demonstrated that linear filtering preprocessing significantly modifies the PE of Gaussian processes.To build on this work, we conducted a study to investigate the MPE’s behavior across a variety of signal generation models including sinusoidal signals, frequency modulated signals, and colored Gaussian noise. Our findings indicate that the MPE mainly reflects changes in the center frequency of the signal spectrum, independent of signal generation models. It’s important to note that the linear preprocessing step used in MPE calculations can lead to misinterpretation of the results. Therefore, we suggest that a proper interpretation of the MPE values should be done in conjunction with a spectral analysis or a time-frequency representation.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度排列熵(MPE)是一种分析信号内部结构和量化复杂性的有趣工具。最常用的置换熵包括在评估置换熵(PE)之前对原始信号进行线性预处理。然而,Davalos等人最近的研究表明,线性滤波预处理显著地改变了高斯过程的PE。在此基础上,我们进行了一项研究,研究了MPE在各种信号产生模型中的行为,包括正弦信号、调频信号和彩色高斯噪声。研究结果表明,MPE主要反映信号频谱中心频率的变化,与信号产生模型无关。值得注意的是,在MPE计算中使用的线性预处理步骤可能导致对结果的误解。因此,我们建议对MPE值进行适当的解释,应结合频谱分析或时频表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving of the interpretation of linear filtering preprocessing-based multiscale permutation entropy
Multi-scale permutation entropy (MPE) is an interesting tool for analyzing signal internal structures and quantifying complexity. The most commonly used MPEs involve a linear preprocessing step applied to the original signal prior to the evaluation of the permutation entropy (PE). However, recent research done by Davalos et al has demonstrated that linear filtering preprocessing significantly modifies the PE of Gaussian processes.To build on this work, we conducted a study to investigate the MPE’s behavior across a variety of signal generation models including sinusoidal signals, frequency modulated signals, and colored Gaussian noise. Our findings indicate that the MPE mainly reflects changes in the center frequency of the signal spectrum, independent of signal generation models. It’s important to note that the linear preprocessing step used in MPE calculations can lead to misinterpretation of the results. Therefore, we suggest that a proper interpretation of the MPE values should be done in conjunction with a spectral analysis or a time-frequency representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信