如何为RDF问答构建模板:一种不确定图相似度连接方法

Weiguo Zheng, Lei Zou, Xiang Lian, J. Yu, Shaoxu Song, Dongyan Zhao
{"title":"如何为RDF问答构建模板:一种不确定图相似度连接方法","authors":"Weiguo Zheng, Lei Zou, Xiang Lian, J. Yu, Shaoxu Song, Dongyan Zhao","doi":"10.1145/2723372.2747648","DOIUrl":null,"url":null,"abstract":"A challenging task in the natural language question answering (Q/A for short) over RDF knowledge graph is how to bridge the gap between unstructured natural language questions (NLQ) and graph-structured RDF data (GOne of the effective tools is the \"template\", which is often used in many existing RDF Q/A systems. However, few of them study how to generate templates automatically. To the best of our knowledge, we are the first to propose a join approach for template generation. Given a workload D of SPARQL queries and a set N of natural language questions, the goal is to find some pairs q, n, for q∈ D ∧ n ∈, N, where SPARQL query q is the best match for natural language question n. These pairs provide promising hints for automatic template generation. Due to the ambiguity of the natural languages, we model the problem above as an uncertain graph join task. We propose several structural and probability pruning techniques to speed up joining. Extensive experiments over real RDF Q/A benchmark datasets confirm both the effectiveness and efficiency of our approach.","PeriodicalId":168391,"journal":{"name":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"How to Build Templates for RDF Question/Answering: An Uncertain Graph Similarity Join Approach\",\"authors\":\"Weiguo Zheng, Lei Zou, Xiang Lian, J. Yu, Shaoxu Song, Dongyan Zhao\",\"doi\":\"10.1145/2723372.2747648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A challenging task in the natural language question answering (Q/A for short) over RDF knowledge graph is how to bridge the gap between unstructured natural language questions (NLQ) and graph-structured RDF data (GOne of the effective tools is the \\\"template\\\", which is often used in many existing RDF Q/A systems. However, few of them study how to generate templates automatically. To the best of our knowledge, we are the first to propose a join approach for template generation. Given a workload D of SPARQL queries and a set N of natural language questions, the goal is to find some pairs q, n, for q∈ D ∧ n ∈, N, where SPARQL query q is the best match for natural language question n. These pairs provide promising hints for automatic template generation. Due to the ambiguity of the natural languages, we model the problem above as an uncertain graph join task. We propose several structural and probability pruning techniques to speed up joining. Extensive experiments over real RDF Q/A benchmark datasets confirm both the effectiveness and efficiency of our approach.\",\"PeriodicalId\":168391,\"journal\":{\"name\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2723372.2747648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2723372.2747648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

在基于RDF知识图的自然语言问答(简称Q/A)中,一个具有挑战性的任务是如何弥合非结构化自然语言问题(NLQ)和图结构化RDF数据之间的差距(有效的工具之一是“模板”,它经常被用于许多现有的RDF Q/A系统中)。然而,很少有人研究如何自动生成模板。据我们所知,我们是第一个为模板生成提出连接方法的人。给定SPARQL查询的工作量D和一组N个自然语言问题,目标是在q∈D∧N∈,N中找到一些对q, N,其中SPARQL查询q是自然语言问题N的最佳匹配。这些对为自动模板生成提供了有希望的提示。由于自然语言的模糊性,我们将上述问题建模为不确定图连接任务。我们提出了几种结构和概率修剪技术来加速连接。在真实RDF Q/A基准数据集上进行的大量实验证实了我们方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Build Templates for RDF Question/Answering: An Uncertain Graph Similarity Join Approach
A challenging task in the natural language question answering (Q/A for short) over RDF knowledge graph is how to bridge the gap between unstructured natural language questions (NLQ) and graph-structured RDF data (GOne of the effective tools is the "template", which is often used in many existing RDF Q/A systems. However, few of them study how to generate templates automatically. To the best of our knowledge, we are the first to propose a join approach for template generation. Given a workload D of SPARQL queries and a set N of natural language questions, the goal is to find some pairs q, n, for q∈ D ∧ n ∈, N, where SPARQL query q is the best match for natural language question n. These pairs provide promising hints for automatic template generation. Due to the ambiguity of the natural languages, we model the problem above as an uncertain graph join task. We propose several structural and probability pruning techniques to speed up joining. Extensive experiments over real RDF Q/A benchmark datasets confirm both the effectiveness and efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信