{"title":"随机常系数微分方程的平均收费公路性质","authors":"M. Hernández, R. Lecaros, S. Zamorano","doi":"10.3934/mcrf.2022016","DOIUrl":null,"url":null,"abstract":"This paper studies the integral turnpike and turnpike in average for a class of random ordinary differential equations. We prove that, under suitable assumptions on the matrices that define the system, the optimal solutions for an optimal distributed control tracking problem remain, in an averaged sense, sufficiently close to the associated random stationary optimal solution for the majority of the time horizon.","PeriodicalId":418020,"journal":{"name":"Mathematical Control & Related Fields","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Averaged turnpike property for differential equations with random constant coefficients\",\"authors\":\"M. Hernández, R. Lecaros, S. Zamorano\",\"doi\":\"10.3934/mcrf.2022016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the integral turnpike and turnpike in average for a class of random ordinary differential equations. We prove that, under suitable assumptions on the matrices that define the system, the optimal solutions for an optimal distributed control tracking problem remain, in an averaged sense, sufficiently close to the associated random stationary optimal solution for the majority of the time horizon.\",\"PeriodicalId\":418020,\"journal\":{\"name\":\"Mathematical Control & Related Fields\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control & Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control & Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2022016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Averaged turnpike property for differential equations with random constant coefficients
This paper studies the integral turnpike and turnpike in average for a class of random ordinary differential equations. We prove that, under suitable assumptions on the matrices that define the system, the optimal solutions for an optimal distributed control tracking problem remain, in an averaged sense, sufficiently close to the associated random stationary optimal solution for the majority of the time horizon.