基于共轭梯度训练神经网络和差分进化的非线性系统辨识混合方法

Chiha Ibtissem, Liouane Nouredine
{"title":"基于共轭梯度训练神经网络和差分进化的非线性系统辨识混合方法","authors":"Chiha Ibtissem, Liouane Nouredine","doi":"10.1109/ICEESA.2013.6578397","DOIUrl":null,"url":null,"abstract":"A hybrid method based on Differential Evolution and Neural Network training algorithms is presented in this paper for improving the performance of neural network in the non linear system identification. For this purpose, the local optimization algorithm of conjugate gradients (CG) is combined with the differential evolution algorithm (DE), which is a population-based stochastic global search method, to yield a computationally efficient algorithm for training multilayer perceptron networks for nonlinear system identification. After, a series of simulation studies of our method on the different nonlinear systems it has been confirmed that the proposed CG+DE algorithm has yielded better identification results in terms of time of convergence and less identification error.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A hybrid method based on conjugate gradient trained neural network and differential evolution for non linear systems identification\",\"authors\":\"Chiha Ibtissem, Liouane Nouredine\",\"doi\":\"10.1109/ICEESA.2013.6578397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid method based on Differential Evolution and Neural Network training algorithms is presented in this paper for improving the performance of neural network in the non linear system identification. For this purpose, the local optimization algorithm of conjugate gradients (CG) is combined with the differential evolution algorithm (DE), which is a population-based stochastic global search method, to yield a computationally efficient algorithm for training multilayer perceptron networks for nonlinear system identification. After, a series of simulation studies of our method on the different nonlinear systems it has been confirmed that the proposed CG+DE algorithm has yielded better identification results in terms of time of convergence and less identification error.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了提高神经网络在非线性系统辨识中的性能,提出了一种基于差分进化和神经网络训练算法的混合方法。为此,将共轭梯度局部优化算法(CG)与基于种群的随机全局搜索方法差分进化算法(DE)相结合,得到一种计算效率高的多层感知器网络训练算法,用于非线性系统辨识。经过对不同非线性系统的一系列仿真研究,证实了本文提出的CG+DE算法在收敛时间和识别误差方面取得了较好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid method based on conjugate gradient trained neural network and differential evolution for non linear systems identification
A hybrid method based on Differential Evolution and Neural Network training algorithms is presented in this paper for improving the performance of neural network in the non linear system identification. For this purpose, the local optimization algorithm of conjugate gradients (CG) is combined with the differential evolution algorithm (DE), which is a population-based stochastic global search method, to yield a computationally efficient algorithm for training multilayer perceptron networks for nonlinear system identification. After, a series of simulation studies of our method on the different nonlinear systems it has been confirmed that the proposed CG+DE algorithm has yielded better identification results in terms of time of convergence and less identification error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信