高概率突变遗传算法中的种群分布动力学

Nicolae-Eugen Croitoru
{"title":"高概率突变遗传算法中的种群分布动力学","authors":"Nicolae-Eugen Croitoru","doi":"10.1109/SYNASC49474.2019.00031","DOIUrl":null,"url":null,"abstract":"This paper contains an investigation into the GA population dynamics induced by very high mutation operator probabilities (≈ 0.95). Drawing inspiration from Consensus Sequence Plots and Estimation of Distribution Algorithms, population distribution natϊve changes are computed between successive generations. This metric is used to characterise multiple parameter variants for a Simple Genetic Algorithm, contrasting low-and high-probability mutation, and low-and high-entropy mutation.","PeriodicalId":102054,"journal":{"name":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Population Distribution Dynamics in Genetic Algorithms with High-Probability Mutation\",\"authors\":\"Nicolae-Eugen Croitoru\",\"doi\":\"10.1109/SYNASC49474.2019.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contains an investigation into the GA population dynamics induced by very high mutation operator probabilities (≈ 0.95). Drawing inspiration from Consensus Sequence Plots and Estimation of Distribution Algorithms, population distribution natϊve changes are computed between successive generations. This metric is used to characterise multiple parameter variants for a Simple Genetic Algorithm, contrasting low-and high-probability mutation, and low-and high-entropy mutation.\",\"PeriodicalId\":102054,\"journal\":{\"name\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC49474.2019.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC49474.2019.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了由非常高的突变算子概率(≈0.95)引起的遗传种群动态。受一致性序列图和分布估计算法的启发,计算了连续代之间的种群分布natϊve变化。该度量用于描述简单遗传算法的多个参数变体,对比低概率和高概率突变,以及低熵和高熵突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population Distribution Dynamics in Genetic Algorithms with High-Probability Mutation
This paper contains an investigation into the GA population dynamics induced by very high mutation operator probabilities (≈ 0.95). Drawing inspiration from Consensus Sequence Plots and Estimation of Distribution Algorithms, population distribution natϊve changes are computed between successive generations. This metric is used to characterise multiple parameter variants for a Simple Genetic Algorithm, contrasting low-and high-probability mutation, and low-and high-entropy mutation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信