稀疏恢复的最大后验估计方法

Mashud Hyder, K. Mahata
{"title":"稀疏恢复的最大后验估计方法","authors":"Mashud Hyder, K. Mahata","doi":"10.1109/ICDSP.2011.6004892","DOIUrl":null,"url":null,"abstract":"We adopt a maximum a posteriori (MAP) estimation based approach for recovering sparse signals from a small number of measurements formed by computing the inner products of the signal with rows of a matrix. We assume that each component of the sparse signal is independent and identically distributed (i.i.d) random variable drawn from a Gaussian mixture model. We then develop a suitable MAP formulation which results in an iterative algorithm. Simulations are performed to study the performance of the algorithm. We observe that our approach has a number of advantages over other sparse recovery techniques, including robustness to noise, increased performance with limited measurements and lower computation time.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Maximum a posteriori estimation approach to sparse recovery\",\"authors\":\"Mashud Hyder, K. Mahata\",\"doi\":\"10.1109/ICDSP.2011.6004892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We adopt a maximum a posteriori (MAP) estimation based approach for recovering sparse signals from a small number of measurements formed by computing the inner products of the signal with rows of a matrix. We assume that each component of the sparse signal is independent and identically distributed (i.i.d) random variable drawn from a Gaussian mixture model. We then develop a suitable MAP formulation which results in an iterative algorithm. Simulations are performed to study the performance of the algorithm. We observe that our approach has a number of advantages over other sparse recovery techniques, including robustness to noise, increased performance with limited measurements and lower computation time.\",\"PeriodicalId\":360702,\"journal\":{\"name\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2011.6004892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们采用一种基于最大后验(MAP)估计的方法,通过计算信号与矩阵行之间的内积来从少量测量中恢复稀疏信号。我们假设稀疏信号的每个分量都是从高斯混合模型中提取的独立的同分布(i.i.d)随机变量。然后,我们开发了一个合适的MAP公式,从而得到一个迭代算法。通过仿真研究了该算法的性能。我们观察到,我们的方法比其他稀疏恢复技术有许多优点,包括对噪声的鲁棒性,在有限的测量下提高性能和更低的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum a posteriori estimation approach to sparse recovery
We adopt a maximum a posteriori (MAP) estimation based approach for recovering sparse signals from a small number of measurements formed by computing the inner products of the signal with rows of a matrix. We assume that each component of the sparse signal is independent and identically distributed (i.i.d) random variable drawn from a Gaussian mixture model. We then develop a suitable MAP formulation which results in an iterative algorithm. Simulations are performed to study the performance of the algorithm. We observe that our approach has a number of advantages over other sparse recovery techniques, including robustness to noise, increased performance with limited measurements and lower computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信