一类主成分分类器在无线传感器网络异常检测中的应用

M. Rassam, A. Zainal, M. A. Maarof
{"title":"一类主成分分类器在无线传感器网络异常检测中的应用","authors":"M. Rassam, A. Zainal, M. A. Maarof","doi":"10.1109/CASoN.2012.6412414","DOIUrl":null,"url":null,"abstract":"To ensure the quality of data collected by sensor networks, misbehavior in measurements should be detected efficiently and accurately in each sensor node before relying the data to the base station. In this paper, a novel anomaly detection model is proposed based on the lightweight One Class Principal Component Classifier for detecting anomalies in sensor measurements collected by each node locally. The efficiency and accuracy of the proposed model are demonstrated using two real life wireless sensor networks datasets namely; labeled dataset (LD) and Intel Berkeley Research Lab dataset (IBRL). The simulation results show that our model achieves higher detection accuracy with relatively lower false alarms. Furthermore, the proposed model incurs less energy consumption by reducing the computational complexity in each node.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"One-Class Principal Component Classifier for anomaly detection in wireless sensor network\",\"authors\":\"M. Rassam, A. Zainal, M. A. Maarof\",\"doi\":\"10.1109/CASoN.2012.6412414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure the quality of data collected by sensor networks, misbehavior in measurements should be detected efficiently and accurately in each sensor node before relying the data to the base station. In this paper, a novel anomaly detection model is proposed based on the lightweight One Class Principal Component Classifier for detecting anomalies in sensor measurements collected by each node locally. The efficiency and accuracy of the proposed model are demonstrated using two real life wireless sensor networks datasets namely; labeled dataset (LD) and Intel Berkeley Research Lab dataset (IBRL). The simulation results show that our model achieves higher detection accuracy with relatively lower false alarms. Furthermore, the proposed model incurs less energy consumption by reducing the computational complexity in each node.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

为了保证传感器网络采集数据的质量,在将数据传输到基站之前,需要在每个传感器节点上高效、准确地检测到测量中的错误行为。本文提出了一种基于轻量级的单类主成分分类器的异常检测模型,用于检测各节点局部采集的传感器测量数据中的异常。利用两个真实的无线传感器网络数据集验证了该模型的有效性和准确性;标记数据集(LD)和英特尔伯克利研究实验室数据集(IBRL)。仿真结果表明,该模型具有较高的检测精度和较低的误报率。此外,该模型通过降低每个节点的计算复杂度而减少了能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Class Principal Component Classifier for anomaly detection in wireless sensor network
To ensure the quality of data collected by sensor networks, misbehavior in measurements should be detected efficiently and accurately in each sensor node before relying the data to the base station. In this paper, a novel anomaly detection model is proposed based on the lightweight One Class Principal Component Classifier for detecting anomalies in sensor measurements collected by each node locally. The efficiency and accuracy of the proposed model are demonstrated using two real life wireless sensor networks datasets namely; labeled dataset (LD) and Intel Berkeley Research Lab dataset (IBRL). The simulation results show that our model achieves higher detection accuracy with relatively lower false alarms. Furthermore, the proposed model incurs less energy consumption by reducing the computational complexity in each node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信