自动驾驶中的深度学习和移动边缘计算概述

Tianyuan Cui
{"title":"自动驾驶中的深度学习和移动边缘计算概述","authors":"Tianyuan Cui","doi":"10.23939/sisn2022.12.208","DOIUrl":null,"url":null,"abstract":"In recent years, mobile edge computing and deep learning have attracted strong industry attention in the application scenario of autonomous driving. Mobile edge computing reduces the transmission delay of autonomous driving information by offloading computational tasks to edge servers to reduce the network load; deep learning can effectively improve the accuracy of obstacle detection, thereby enhancing the stability and safety of autonomous driving. This paper first introduces the basic concept and reference architecture of MEC and the commonly used model algorithms in deep learning, and then summarizes the applications of MEC and deep learning in autonomous driving from three aspects: target detection, path planning, and collision avoidance, and finally discusses and outlooks the problems and challenges in current research.","PeriodicalId":444399,"journal":{"name":"Vìsnik Nacìonalʹnogo unìversitetu \"Lʹvìvsʹka polìtehnìka\". Serìâ Ìnformacìjnì sistemi ta merežì","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of deep learning and mobile edge computing in autonomous driving\",\"authors\":\"Tianyuan Cui\",\"doi\":\"10.23939/sisn2022.12.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, mobile edge computing and deep learning have attracted strong industry attention in the application scenario of autonomous driving. Mobile edge computing reduces the transmission delay of autonomous driving information by offloading computational tasks to edge servers to reduce the network load; deep learning can effectively improve the accuracy of obstacle detection, thereby enhancing the stability and safety of autonomous driving. This paper first introduces the basic concept and reference architecture of MEC and the commonly used model algorithms in deep learning, and then summarizes the applications of MEC and deep learning in autonomous driving from three aspects: target detection, path planning, and collision avoidance, and finally discusses and outlooks the problems and challenges in current research.\",\"PeriodicalId\":444399,\"journal\":{\"name\":\"Vìsnik Nacìonalʹnogo unìversitetu \\\"Lʹvìvsʹka polìtehnìka\\\". Serìâ Ìnformacìjnì sistemi ta merežì\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vìsnik Nacìonalʹnogo unìversitetu \\\"Lʹvìvsʹka polìtehnìka\\\". Serìâ Ìnformacìjnì sistemi ta merežì\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/sisn2022.12.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vìsnik Nacìonalʹnogo unìversitetu \"Lʹvìvsʹka polìtehnìka\". Serìâ Ìnformacìjnì sistemi ta merežì","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/sisn2022.12.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,移动边缘计算和深度学习在自动驾驶的应用场景中引起了业界的强烈关注。移动边缘计算通过将计算任务卸载到边缘服务器来减少自动驾驶信息的传输延迟,从而降低网络负载;深度学习可以有效地提高障碍物检测的准确性,从而增强自动驾驶的稳定性和安全性。本文首先介绍了MEC的基本概念和参考架构以及深度学习中常用的模型算法,然后从目标检测、路径规划和避碰三个方面总结了MEC和深度学习在自动驾驶中的应用,最后讨论和展望了当前研究中存在的问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of deep learning and mobile edge computing in autonomous driving
In recent years, mobile edge computing and deep learning have attracted strong industry attention in the application scenario of autonomous driving. Mobile edge computing reduces the transmission delay of autonomous driving information by offloading computational tasks to edge servers to reduce the network load; deep learning can effectively improve the accuracy of obstacle detection, thereby enhancing the stability and safety of autonomous driving. This paper first introduces the basic concept and reference architecture of MEC and the commonly used model algorithms in deep learning, and then summarizes the applications of MEC and deep learning in autonomous driving from three aspects: target detection, path planning, and collision avoidance, and finally discusses and outlooks the problems and challenges in current research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信