应用图像处理技术诊断浸润性导管癌

A. R. Chaudhury, Ranjani B Iyer, Kaveri Iychettira, A. Sreedevi
{"title":"应用图像处理技术诊断浸润性导管癌","authors":"A. R. Chaudhury, Ranjani B Iyer, Kaveri Iychettira, A. Sreedevi","doi":"10.1109/ICIIP.2011.6108877","DOIUrl":null,"url":null,"abstract":"Invasive Ductal Carcinoma (IDC) is the most common type of breast cancer accounting for almost 22% of all female cancers in the world. Conventionally, IDC is diagnosed by a pathologist after observing changes in the nuclear morphology of cancer cells. In this paper, we propose an algorithm to diagnose IDC by the analysis and processing of cytology images using MATLAB. The algorithm quantifies nuclear morphological parameters like size, the regularity of the nuclear margin and level of chromatin clumping for nuclei present in each cytology smear by using a sequence of image processing steps. After quantification of these parameters, a comparison is made between normal and IDC images using which a threshold is set for these parameters. These thresholds are then used to make a diagnosis for IDC where the algorithm classifies a cytology image as either normal or cancer. The algorithm therefore finds applications in automated screening programs.","PeriodicalId":201779,"journal":{"name":"2011 International Conference on Image Information Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Diagnosis of Invasive Ductal Carcinoma using image processing techniques\",\"authors\":\"A. R. Chaudhury, Ranjani B Iyer, Kaveri Iychettira, A. Sreedevi\",\"doi\":\"10.1109/ICIIP.2011.6108877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Invasive Ductal Carcinoma (IDC) is the most common type of breast cancer accounting for almost 22% of all female cancers in the world. Conventionally, IDC is diagnosed by a pathologist after observing changes in the nuclear morphology of cancer cells. In this paper, we propose an algorithm to diagnose IDC by the analysis and processing of cytology images using MATLAB. The algorithm quantifies nuclear morphological parameters like size, the regularity of the nuclear margin and level of chromatin clumping for nuclei present in each cytology smear by using a sequence of image processing steps. After quantification of these parameters, a comparison is made between normal and IDC images using which a threshold is set for these parameters. These thresholds are then used to make a diagnosis for IDC where the algorithm classifies a cytology image as either normal or cancer. The algorithm therefore finds applications in automated screening programs.\",\"PeriodicalId\":201779,\"journal\":{\"name\":\"2011 International Conference on Image Information Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Image Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIP.2011.6108877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Image Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP.2011.6108877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

浸润性导管癌(Invasive Ductal Carcinoma, IDC)是最常见的乳腺癌类型,约占全球所有女性癌症的22%。传统上,IDC是由病理学家在观察癌细胞的核形态变化后诊断的。本文提出了一种利用MATLAB对细胞学图像进行分析和处理来诊断IDC的算法。该算法量化核形态参数,如大小,核边缘的规律性和染色质聚集水平的细胞核存在于每个细胞学涂片通过使用一系列的图像处理步骤。在量化这些参数后,将正常图像与IDC图像进行比较,并为这些参数设置阈值。然后使用这些阈值对IDC进行诊断,其中算法将细胞学图像分类为正常或癌症。因此,该算法在自动筛选程序中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Invasive Ductal Carcinoma using image processing techniques
Invasive Ductal Carcinoma (IDC) is the most common type of breast cancer accounting for almost 22% of all female cancers in the world. Conventionally, IDC is diagnosed by a pathologist after observing changes in the nuclear morphology of cancer cells. In this paper, we propose an algorithm to diagnose IDC by the analysis and processing of cytology images using MATLAB. The algorithm quantifies nuclear morphological parameters like size, the regularity of the nuclear margin and level of chromatin clumping for nuclei present in each cytology smear by using a sequence of image processing steps. After quantification of these parameters, a comparison is made between normal and IDC images using which a threshold is set for these parameters. These thresholds are then used to make a diagnosis for IDC where the algorithm classifies a cytology image as either normal or cancer. The algorithm therefore finds applications in automated screening programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信