MCMC诊断方法

T. Donovan, R. Mickey
{"title":"MCMC诊断方法","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0014","DOIUrl":null,"url":null,"abstract":"The purpose of this chapter is to illustrate some of the things that can go wrong in Markov Chain Monte Carlo (MCMC) analysis and to introduce some diagnostic tools that help identify whether the results of such an analysis can be trusted. The goal of a Bayesian MCMC analysis is to estimate the posterior distribution while skipping the integration required in the denominator of Bayes’ Theorem. The MCMC approach does this by breaking the problem into small, bite-sized pieces, allowing the posterior distribution to be built bit by bit. The main challenge, however, is that several things might go wrong in the process. Several diagnostic tests can be applied to ensure that an MCMC analysis provides an adequate estimate of the posterior distribution. Such diagnostics are required of all MCMC analyses and include tuning, burn-in, and pruning.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MCMC Diagnostic Approaches\",\"authors\":\"T. Donovan, R. Mickey\",\"doi\":\"10.1093/OSO/9780198841296.003.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this chapter is to illustrate some of the things that can go wrong in Markov Chain Monte Carlo (MCMC) analysis and to introduce some diagnostic tools that help identify whether the results of such an analysis can be trusted. The goal of a Bayesian MCMC analysis is to estimate the posterior distribution while skipping the integration required in the denominator of Bayes’ Theorem. The MCMC approach does this by breaking the problem into small, bite-sized pieces, allowing the posterior distribution to be built bit by bit. The main challenge, however, is that several things might go wrong in the process. Several diagnostic tests can be applied to ensure that an MCMC analysis provides an adequate estimate of the posterior distribution. Such diagnostics are required of all MCMC analyses and include tuning, burn-in, and pruning.\",\"PeriodicalId\":285230,\"journal\":{\"name\":\"Bayesian Statistics for Beginners\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Statistics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780198841296.003.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章的目的是说明在马尔可夫链蒙特卡罗(MCMC)分析中可能出错的一些事情,并介绍一些诊断工具,以帮助确定这种分析的结果是否可信。贝叶斯MCMC分析的目标是估计后验分布,同时跳过贝叶斯定理分母中所需的积分。MCMC方法通过将问题分解成小块来实现这一点,允许一点一点地构建后验分布。然而,主要的挑战是,在这个过程中可能会出现一些问题。几个诊断测试可以应用,以确保MCMC分析提供了一个充分的估计后验分布。所有MCMC分析都需要这样的诊断,包括调优、老化和修剪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MCMC Diagnostic Approaches
The purpose of this chapter is to illustrate some of the things that can go wrong in Markov Chain Monte Carlo (MCMC) analysis and to introduce some diagnostic tools that help identify whether the results of such an analysis can be trusted. The goal of a Bayesian MCMC analysis is to estimate the posterior distribution while skipping the integration required in the denominator of Bayes’ Theorem. The MCMC approach does this by breaking the problem into small, bite-sized pieces, allowing the posterior distribution to be built bit by bit. The main challenge, however, is that several things might go wrong in the process. Several diagnostic tests can be applied to ensure that an MCMC analysis provides an adequate estimate of the posterior distribution. Such diagnostics are required of all MCMC analyses and include tuning, burn-in, and pruning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信