恶意软件分类的深度学习框架和可视化

A. S, S. K, P. Poornachandran, V. Menon, S. P.
{"title":"恶意软件分类的深度学习框架和可视化","authors":"A. S, S. K, P. Poornachandran, V. Menon, S. P.","doi":"10.1109/ICACCS.2019.8728471","DOIUrl":null,"url":null,"abstract":"In this paper we propose a deep learning framework for classification of malware. There has been an enormous increase in the volume of malware generated lately which represents a genuine security danger to organizations and people. So as to battle the expansion of malwares, new strategies are needed to quickly identify and classify malware. Malimg dataset, a publicly available benchmark data set was used for the experimentation. The architecture used in this work is a hybrid cost-sensitive network of one-dimensional Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network which obtained an accuracy of 94.4%, an increase in performance compared to work done by [1] which got 84.9%. Hyper parameter tuning is done on deep learning architecture to set the parameters. A learning rate of 0.01 was taken for all experiments. Train-test split of 70-30% was done during experimentation. This facilitates to find how well the models perform on imbalanced data sets. Usual methods like disassembly, decompiling, de-obfuscation or execution of the binary need not be done in this proposed method. The source code and the trained models are made publicly available for further research.","PeriodicalId":249139,"journal":{"name":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Deep Learning Framework and Visualization for Malware Classification\",\"authors\":\"A. S, S. K, P. Poornachandran, V. Menon, S. P.\",\"doi\":\"10.1109/ICACCS.2019.8728471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a deep learning framework for classification of malware. There has been an enormous increase in the volume of malware generated lately which represents a genuine security danger to organizations and people. So as to battle the expansion of malwares, new strategies are needed to quickly identify and classify malware. Malimg dataset, a publicly available benchmark data set was used for the experimentation. The architecture used in this work is a hybrid cost-sensitive network of one-dimensional Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network which obtained an accuracy of 94.4%, an increase in performance compared to work done by [1] which got 84.9%. Hyper parameter tuning is done on deep learning architecture to set the parameters. A learning rate of 0.01 was taken for all experiments. Train-test split of 70-30% was done during experimentation. This facilitates to find how well the models perform on imbalanced data sets. Usual methods like disassembly, decompiling, de-obfuscation or execution of the binary need not be done in this proposed method. The source code and the trained models are made publicly available for further research.\",\"PeriodicalId\":249139,\"journal\":{\"name\":\"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCS.2019.8728471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2019.8728471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种用于恶意软件分类的深度学习框架。最近产生的恶意软件数量急剧增加,这对组织和个人构成了真正的安全威胁。为了对抗恶意软件的扩张,需要新的策略来快速识别和分类恶意软件。实验使用了一个公开可用的基准数据集Malimg dataset。本文使用的架构是一维卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合代价敏感网络,准确率达到94.4%,比[1]的84.9%提高了性能。超参数调优是在深度学习架构上进行参数设置的。所有实验的学习率均为0.01。实验时采用70-30%的训练-测试分割。这有助于发现模型在不平衡数据集上的表现。通常的方法,如反汇编、反编译、反混淆或执行二进制文件不需要在这个建议的方法中完成。源代码和经过训练的模型都是公开的,供进一步研究使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Framework and Visualization for Malware Classification
In this paper we propose a deep learning framework for classification of malware. There has been an enormous increase in the volume of malware generated lately which represents a genuine security danger to organizations and people. So as to battle the expansion of malwares, new strategies are needed to quickly identify and classify malware. Malimg dataset, a publicly available benchmark data set was used for the experimentation. The architecture used in this work is a hybrid cost-sensitive network of one-dimensional Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network which obtained an accuracy of 94.4%, an increase in performance compared to work done by [1] which got 84.9%. Hyper parameter tuning is done on deep learning architecture to set the parameters. A learning rate of 0.01 was taken for all experiments. Train-test split of 70-30% was done during experimentation. This facilitates to find how well the models perform on imbalanced data sets. Usual methods like disassembly, decompiling, de-obfuscation or execution of the binary need not be done in this proposed method. The source code and the trained models are made publicly available for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信