基于u型网络的时间句基础高效建议生成

Ludan Ruan, Qin Jin
{"title":"基于u型网络的时间句基础高效建议生成","authors":"Ludan Ruan, Qin Jin","doi":"10.1145/3469877.3490606","DOIUrl":null,"url":null,"abstract":"Temporal Sentence Grounding aims to localize the relevant temporal region in a given video according to the query sentence. It is a challenging task due to the semantic gap between different modalities and diversity of the event duration. Proposal generation plays an important role in previous mainstream methods. However, previous proposal generation methods apply the same feature extraction without considering the diversity of event duration. In this paper, we propose a novel temporal sentence grounding model with an U-shaped Network for efficient proposal generation (UN-TSG), which utilizes U-shaped structure to encode proposals of different lengths hierarchically. Experiments on two benchmark datasets demonstrate that with more efficient proposal generation method, our model can achieve the state-of-the-art grounding performance in faster speed and with less computation cost.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Proposal Generation with U-shaped Network for Temporal Sentence Grounding\",\"authors\":\"Ludan Ruan, Qin Jin\",\"doi\":\"10.1145/3469877.3490606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal Sentence Grounding aims to localize the relevant temporal region in a given video according to the query sentence. It is a challenging task due to the semantic gap between different modalities and diversity of the event duration. Proposal generation plays an important role in previous mainstream methods. However, previous proposal generation methods apply the same feature extraction without considering the diversity of event duration. In this paper, we propose a novel temporal sentence grounding model with an U-shaped Network for efficient proposal generation (UN-TSG), which utilizes U-shaped structure to encode proposals of different lengths hierarchically. Experiments on two benchmark datasets demonstrate that with more efficient proposal generation method, our model can achieve the state-of-the-art grounding performance in faster speed and with less computation cost.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间句基础的目的是根据查询句在给定视频中定位相关的时间区域。由于不同模态之间的语义差异和事件持续时间的多样性,这是一项具有挑战性的任务。在以往的主流方法中,提议生成占有重要地位。然而,以往的建议生成方法采用相同的特征提取,而没有考虑事件持续时间的多样性。本文提出了一种基于u形网络的时间句基础模型,该模型利用u形结构对不同长度的建议进行分层编码。在两个基准数据集上的实验表明,采用更高效的提议生成方法,我们的模型可以以更快的速度和更少的计算成本获得最先进的接地性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Proposal Generation with U-shaped Network for Temporal Sentence Grounding
Temporal Sentence Grounding aims to localize the relevant temporal region in a given video according to the query sentence. It is a challenging task due to the semantic gap between different modalities and diversity of the event duration. Proposal generation plays an important role in previous mainstream methods. However, previous proposal generation methods apply the same feature extraction without considering the diversity of event duration. In this paper, we propose a novel temporal sentence grounding model with an U-shaped Network for efficient proposal generation (UN-TSG), which utilizes U-shaped structure to encode proposals of different lengths hierarchically. Experiments on two benchmark datasets demonstrate that with more efficient proposal generation method, our model can achieve the state-of-the-art grounding performance in faster speed and with less computation cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信