利用热成像技术精确测量新生儿体温

Kianoush Rassels, Paddy J. French
{"title":"利用热成像技术精确测量新生儿体温","authors":"Kianoush Rassels, Paddy J. French","doi":"10.1109/SSI52265.2021.9467024","DOIUrl":null,"url":null,"abstract":"One of the important measured vital signs in neonates is the body temperature. The traditional measurement uses adhesive pads, but medical staff are hindered by connectors attached to the infant. Remote infrared thermal imaging techniques provide a non-intrusive and safe method to measure body temperature. By means of the thermography technology, it is possible to monitor the variations and trends in the body temperature, which is more reliable, faster, less stressful than traditional methods. Measuring body temperature of a moving neonate remains a challenge. Moreover, factors like humidity, thermal lens forming through the incubator portholes, thermal noise from inside and outside the incubator, camera position and limited Field of View through the incubator portholes, etc. could disrupt a reliable measurement. This study will focus on developing a technique that measures neonates’ body temperature accurately in an incubator. By eliminating unwanted external factors, continual measurement of a Region of Interest (ROI) become more feasible from which trends become available for the techniques like Artificial Intelligence, Machine Learning or Deep Learning. Moreover, this method reduces stress and discomfort for the infant. The outcome of this study is more accurate and the temperature profile of a geometric shapes or ROI over time provides a valuable input to the physicians or nurses to provide higher quality care.","PeriodicalId":382081,"journal":{"name":"2021 Smart Systems Integration (SSI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accurate Body Temperature Measurement of a Neonate Uusing Thermography Technology\",\"authors\":\"Kianoush Rassels, Paddy J. French\",\"doi\":\"10.1109/SSI52265.2021.9467024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the important measured vital signs in neonates is the body temperature. The traditional measurement uses adhesive pads, but medical staff are hindered by connectors attached to the infant. Remote infrared thermal imaging techniques provide a non-intrusive and safe method to measure body temperature. By means of the thermography technology, it is possible to monitor the variations and trends in the body temperature, which is more reliable, faster, less stressful than traditional methods. Measuring body temperature of a moving neonate remains a challenge. Moreover, factors like humidity, thermal lens forming through the incubator portholes, thermal noise from inside and outside the incubator, camera position and limited Field of View through the incubator portholes, etc. could disrupt a reliable measurement. This study will focus on developing a technique that measures neonates’ body temperature accurately in an incubator. By eliminating unwanted external factors, continual measurement of a Region of Interest (ROI) become more feasible from which trends become available for the techniques like Artificial Intelligence, Machine Learning or Deep Learning. Moreover, this method reduces stress and discomfort for the infant. The outcome of this study is more accurate and the temperature profile of a geometric shapes or ROI over time provides a valuable input to the physicians or nurses to provide higher quality care.\",\"PeriodicalId\":382081,\"journal\":{\"name\":\"2021 Smart Systems Integration (SSI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Smart Systems Integration (SSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSI52265.2021.9467024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Smart Systems Integration (SSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSI52265.2021.9467024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

新生儿的重要生命体征之一是体温。传统的测量方法是使用粘胶垫,但婴儿身上的连接器阻碍了医务人员的工作。远程红外热成像技术提供了一种非侵入性的、安全的体温测量方法。通过热成像技术,可以监测体温的变化和趋势,比传统方法更可靠、更快、压力更小。测量移动新生儿的体温仍然是一个挑战。此外,湿度、通过培养箱舷窗形成的热透镜、来自培养箱内外的热噪声、摄像机位置和通过培养箱舷窗的有限视野等因素可能会影响可靠的测量。这项研究的重点是开发一种技术,可以在恒温箱中准确测量新生儿的体温。通过消除不必要的外部因素,持续测量感兴趣区域(ROI)变得更加可行,从而为人工智能、机器学习或深度学习等技术提供趋势。此外,这种方法减少了婴儿的压力和不适。本研究的结果更加准确,几何形状的温度曲线或ROI随时间的变化为医生或护士提供了有价值的输入,以提供更高质量的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Body Temperature Measurement of a Neonate Uusing Thermography Technology
One of the important measured vital signs in neonates is the body temperature. The traditional measurement uses adhesive pads, but medical staff are hindered by connectors attached to the infant. Remote infrared thermal imaging techniques provide a non-intrusive and safe method to measure body temperature. By means of the thermography technology, it is possible to monitor the variations and trends in the body temperature, which is more reliable, faster, less stressful than traditional methods. Measuring body temperature of a moving neonate remains a challenge. Moreover, factors like humidity, thermal lens forming through the incubator portholes, thermal noise from inside and outside the incubator, camera position and limited Field of View through the incubator portholes, etc. could disrupt a reliable measurement. This study will focus on developing a technique that measures neonates’ body temperature accurately in an incubator. By eliminating unwanted external factors, continual measurement of a Region of Interest (ROI) become more feasible from which trends become available for the techniques like Artificial Intelligence, Machine Learning or Deep Learning. Moreover, this method reduces stress and discomfort for the infant. The outcome of this study is more accurate and the temperature profile of a geometric shapes or ROI over time provides a valuable input to the physicians or nurses to provide higher quality care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信