广义差分算子二阶差分方程的振动与非振动判据

{"title":"广义差分算子二阶差分方程的振动与非振动判据","authors":"","doi":"10.52280/pujm.2021.531005","DOIUrl":null,"url":null,"abstract":"In this study we investigate some new oscillation and nonoscillation criteria and generalize and improve some results in the literatures for second order nonlinear difference equation with generalized difference operators of the form ∆l,a(pn∆l,axn) + qn(∆l,axn)\nβ = F (n, xn, ∆l,bxn), where ∆l,σ is generalized difference operator such that defined as ∆l,σxn = xn+l − σxn, and F : N × R 2→ R˙ . Also, some examples illustrating the results are","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation and nonoscillation criteria for second order difference equations with\\ngeneralized difference operators\",\"authors\":\"\",\"doi\":\"10.52280/pujm.2021.531005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we investigate some new oscillation and nonoscillation criteria and generalize and improve some results in the literatures for second order nonlinear difference equation with generalized difference operators of the form ∆l,a(pn∆l,axn) + qn(∆l,axn)\\nβ = F (n, xn, ∆l,bxn), where ∆l,σ is generalized difference operator such that defined as ∆l,σxn = xn+l − σxn, and F : N × R 2→ R˙ . Also, some examples illustrating the results are\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2021.531005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.531005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类二阶非线性差分方程的一些新的振动和非振动判据,推广和改进了一类二阶非线性差分方程的一些结果,该方程的广义差分算子为∆l,a(pn∆l,axn) + qn(∆l,axn)β = F (n, xn,∆l,bxn),其中∆l,σ为广义差分算子,定义为∆l,σxn = xn+l - σxn, F: n × r2→R˙。此外,一些例子说明了结果是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation and nonoscillation criteria for second order difference equations with generalized difference operators
In this study we investigate some new oscillation and nonoscillation criteria and generalize and improve some results in the literatures for second order nonlinear difference equation with generalized difference operators of the form ∆l,a(pn∆l,axn) + qn(∆l,axn) β = F (n, xn, ∆l,bxn), where ∆l,σ is generalized difference operator such that defined as ∆l,σxn = xn+l − σxn, and F : N × R 2→ R˙ . Also, some examples illustrating the results are
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信