{"title":"自相关函数:状态和检测器表征的有用工具","authors":"Giovanni Chesi, A. Allevi, M. Bondani","doi":"10.1515/qmetro-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract The calculation of autocorrelation functions represents a routinely used tool to characterise quantum states of light. In this paper, we evaluate the g(2) function for detected photons in the case of mesoscopic multi-mode twin-beam states in order to fully investigate their statistical properties starting from measurable quantities. Moreover, we show that the second-order autocorrelation function is also useful to estimate the spurious effects affecting the employed Silicon-photomultiplier detectors.","PeriodicalId":421179,"journal":{"name":"Quantum Measurements and Quantum Metrology","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Autocorrelation functions: a useful tool for both state and detector characterisation\",\"authors\":\"Giovanni Chesi, A. Allevi, M. Bondani\",\"doi\":\"10.1515/qmetro-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The calculation of autocorrelation functions represents a routinely used tool to characterise quantum states of light. In this paper, we evaluate the g(2) function for detected photons in the case of mesoscopic multi-mode twin-beam states in order to fully investigate their statistical properties starting from measurable quantities. Moreover, we show that the second-order autocorrelation function is also useful to estimate the spurious effects affecting the employed Silicon-photomultiplier detectors.\",\"PeriodicalId\":421179,\"journal\":{\"name\":\"Quantum Measurements and Quantum Metrology\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Measurements and Quantum Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/qmetro-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Measurements and Quantum Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/qmetro-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autocorrelation functions: a useful tool for both state and detector characterisation
Abstract The calculation of autocorrelation functions represents a routinely used tool to characterise quantum states of light. In this paper, we evaluate the g(2) function for detected photons in the case of mesoscopic multi-mode twin-beam states in order to fully investigate their statistical properties starting from measurable quantities. Moreover, we show that the second-order autocorrelation function is also useful to estimate the spurious effects affecting the employed Silicon-photomultiplier detectors.