欧几里得几何和非欧几里得几何中框架的静力学和运动学

Ivan Izmestiev
{"title":"欧几里得几何和非欧几里得几何中框架的静力学和运动学","authors":"Ivan Izmestiev","doi":"10.4171/196-1/12","DOIUrl":null,"url":null,"abstract":"This is a survey article on the infinitesimal rigidity of frameworks in Euclidean, hyperbolic, and spherical geometry. We discuss the equivalence of the static and kinematic formulations of the infinitesimal rigidity, the projective interpretation of statics (representing forces as bivectors), and the infinitesimal Pogorelov maps that establish correspondence between infinitesimal motions of a framework and of its geodesic image. Also we describe the Maxwell-Cremona correspondence between equilibrium loads and polyhedral lifts, both for Euclidean and for non-Euclidean frameworks.","PeriodicalId":429025,"journal":{"name":"Eighteen Essays in Non-Euclidean Geometry","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Statics and kinematics of frameworks in Euclidean and non-Euclidean geometry\",\"authors\":\"Ivan Izmestiev\",\"doi\":\"10.4171/196-1/12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a survey article on the infinitesimal rigidity of frameworks in Euclidean, hyperbolic, and spherical geometry. We discuss the equivalence of the static and kinematic formulations of the infinitesimal rigidity, the projective interpretation of statics (representing forces as bivectors), and the infinitesimal Pogorelov maps that establish correspondence between infinitesimal motions of a framework and of its geodesic image. Also we describe the Maxwell-Cremona correspondence between equilibrium loads and polyhedral lifts, both for Euclidean and for non-Euclidean frameworks.\",\"PeriodicalId\":429025,\"journal\":{\"name\":\"Eighteen Essays in Non-Euclidean Geometry\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighteen Essays in Non-Euclidean Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/196-1/12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteen Essays in Non-Euclidean Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/196-1/12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

这是一篇关于欧几里得几何、双曲几何和球面几何框架的无穷小刚度的综述文章。我们讨论了无穷小刚度的静态和运动公式的等效性,静力学的射影解释(将力表示为双向量),以及在框架的无穷小运动与其测地线图像之间建立对应关系的无穷小Pogorelov映射。此外,我们还描述了平衡载荷和多面体升力之间的麦克斯韦-克雷莫纳对应关系,既适用于欧几里得框架也适用于非欧几里得框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statics and kinematics of frameworks in Euclidean and non-Euclidean geometry
This is a survey article on the infinitesimal rigidity of frameworks in Euclidean, hyperbolic, and spherical geometry. We discuss the equivalence of the static and kinematic formulations of the infinitesimal rigidity, the projective interpretation of statics (representing forces as bivectors), and the infinitesimal Pogorelov maps that establish correspondence between infinitesimal motions of a framework and of its geodesic image. Also we describe the Maxwell-Cremona correspondence between equilibrium loads and polyhedral lifts, both for Euclidean and for non-Euclidean frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信