{"title":"宽带频谱传感的独特压缩采样技术","authors":"Andrew F. Schaefer, M. Fowler","doi":"10.1109/NAECON46414.2019.9057897","DOIUrl":null,"url":null,"abstract":"Dynamic Spectrum Allocation of 5G networks via direct sampling poses significant processing challenges to embedded processing used in Cognitive Radios. This paper proposes two new compressive sampling techniques to reduce both data throughput and hardware complexity, maximizing the potential of direct sampling for spectrum sensing applications.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique Compressive Sampling Techniques for Wideband Spectrum Sensing\",\"authors\":\"Andrew F. Schaefer, M. Fowler\",\"doi\":\"10.1109/NAECON46414.2019.9057897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Spectrum Allocation of 5G networks via direct sampling poses significant processing challenges to embedded processing used in Cognitive Radios. This paper proposes two new compressive sampling techniques to reduce both data throughput and hardware complexity, maximizing the potential of direct sampling for spectrum sensing applications.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9057897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unique Compressive Sampling Techniques for Wideband Spectrum Sensing
Dynamic Spectrum Allocation of 5G networks via direct sampling poses significant processing challenges to embedded processing used in Cognitive Radios. This paper proposes two new compressive sampling techniques to reduce both data throughput and hardware complexity, maximizing the potential of direct sampling for spectrum sensing applications.