单级三相升压功率因数校正整流器的控制

Ayan Mallik, B. Faulkner, A. Khaligh
{"title":"单级三相升压功率因数校正整流器的控制","authors":"Ayan Mallik, B. Faulkner, A. Khaligh","doi":"10.1109/APEC.2016.7467851","DOIUrl":null,"url":null,"abstract":"Advances in power electronics are enabling More Electric Aircrafts (MEAs) to replace pneumatic systems with electrical systems. Active power factor correction (PFC) rectifiers are used in MEAs to rectify the output voltage of the three-phase AC-DC boost converter, while maintaining a unity input power factor. Many existing control strategies implement PI compensators, with slow response times, in their voltage and current loops. Alternatively, computationally expensive nonlinear controllers can be chosen to generate input currents with high power factor and low total harmonic distortion (THD), but they may need to be operated at high switching frequencies due to relatively slower execution of control loop. In this work, a novel control strategy is proposed for a three-phase, single-stage boost-type rectifier that is capable of tight and fast regulation of the output voltage, while simultaneously achieving unity input power factor, without constraining the operating switching frequency. The proposed control strategy is implemented, using one voltage-loop PI controller and a linearized transfer function of duty-ratio to input current, for inner loop current control. A 1.5 kW three-phase boost PFC prototype is designed and developed to validate the proposed control algorithm. The experimental results show that an input power factor of 0.992 and a tightly regulated DC link voltage with 3% ripple can be achieved.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Control of a single-stage three-phase boost power factor correction rectifier\",\"authors\":\"Ayan Mallik, B. Faulkner, A. Khaligh\",\"doi\":\"10.1109/APEC.2016.7467851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in power electronics are enabling More Electric Aircrafts (MEAs) to replace pneumatic systems with electrical systems. Active power factor correction (PFC) rectifiers are used in MEAs to rectify the output voltage of the three-phase AC-DC boost converter, while maintaining a unity input power factor. Many existing control strategies implement PI compensators, with slow response times, in their voltage and current loops. Alternatively, computationally expensive nonlinear controllers can be chosen to generate input currents with high power factor and low total harmonic distortion (THD), but they may need to be operated at high switching frequencies due to relatively slower execution of control loop. In this work, a novel control strategy is proposed for a three-phase, single-stage boost-type rectifier that is capable of tight and fast regulation of the output voltage, while simultaneously achieving unity input power factor, without constraining the operating switching frequency. The proposed control strategy is implemented, using one voltage-loop PI controller and a linearized transfer function of duty-ratio to input current, for inner loop current control. A 1.5 kW three-phase boost PFC prototype is designed and developed to validate the proposed control algorithm. The experimental results show that an input power factor of 0.992 and a tightly regulated DC link voltage with 3% ripple can be achieved.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7467851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7467851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

电力电子技术的进步使更多的电动飞机(mea)能够用电气系统取代气动系统。有源功率因数校正(PFC)整流器在mea中用于整流三相交直流升压变换器的输出电压,同时保持一个统一的输入功率因数。许多现有的控制策略在电压和电流回路中实现了响应时间较慢的PI补偿器。另外,可以选择计算成本昂贵的非线性控制器来产生具有高功率因数和低总谐波失真(THD)的输入电流,但由于控制回路的执行速度相对较慢,它们可能需要在高开关频率下工作。在这项工作中,提出了一种新的控制策略,用于三相,单级升压型整流器,能够严格和快速地调节输出电压,同时实现统一的输入功率因数,而不限制工作开关频率。采用一个电压环PI控制器和一个占空比与输入电流的线性化传递函数实现内环电流控制。设计并开发了一个1.5 kW三相升压PFC原型来验证所提出的控制算法。实验结果表明,该电路可以实现0.992的输入功率因数和3%纹波的严密调节直流链路电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of a single-stage three-phase boost power factor correction rectifier
Advances in power electronics are enabling More Electric Aircrafts (MEAs) to replace pneumatic systems with electrical systems. Active power factor correction (PFC) rectifiers are used in MEAs to rectify the output voltage of the three-phase AC-DC boost converter, while maintaining a unity input power factor. Many existing control strategies implement PI compensators, with slow response times, in their voltage and current loops. Alternatively, computationally expensive nonlinear controllers can be chosen to generate input currents with high power factor and low total harmonic distortion (THD), but they may need to be operated at high switching frequencies due to relatively slower execution of control loop. In this work, a novel control strategy is proposed for a three-phase, single-stage boost-type rectifier that is capable of tight and fast regulation of the output voltage, while simultaneously achieving unity input power factor, without constraining the operating switching frequency. The proposed control strategy is implemented, using one voltage-loop PI controller and a linearized transfer function of duty-ratio to input current, for inner loop current control. A 1.5 kW three-phase boost PFC prototype is designed and developed to validate the proposed control algorithm. The experimental results show that an input power factor of 0.992 and a tightly regulated DC link voltage with 3% ripple can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信