基于稀疏表示的人脸识别改进算法

Cemil Turan, S. Kadyrov, Diana Burissova
{"title":"基于稀疏表示的人脸识别改进算法","authors":"Cemil Turan, S. Kadyrov, Diana Burissova","doi":"10.1109/COCONET.2018.8476916","DOIUrl":null,"url":null,"abstract":"This paper considers a variation of Sparse Representation-based Classification algorithm. Accuracy and time of evaluation of face recognition are two key performance indicators. This work compares performance of modified Sparse Representation-based Classification algorithm against original Sparse Representation-based Classification algorithm. Yale Face Database B is used to carry MATLAB simulations and results show that modified Sparse Representation-based Classification algorithm outperforms in terms of time. Moreover, the authors study and compare these algorithms when there is only a few training samples per subject is available.","PeriodicalId":250788,"journal":{"name":"2018 International Conference on Computing and Network Communications (CoCoNet)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Face Recognition Algorithm Based on Sparse Representation\",\"authors\":\"Cemil Turan, S. Kadyrov, Diana Burissova\",\"doi\":\"10.1109/COCONET.2018.8476916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a variation of Sparse Representation-based Classification algorithm. Accuracy and time of evaluation of face recognition are two key performance indicators. This work compares performance of modified Sparse Representation-based Classification algorithm against original Sparse Representation-based Classification algorithm. Yale Face Database B is used to carry MATLAB simulations and results show that modified Sparse Representation-based Classification algorithm outperforms in terms of time. Moreover, the authors study and compare these algorithms when there is only a few training samples per subject is available.\",\"PeriodicalId\":250788,\"journal\":{\"name\":\"2018 International Conference on Computing and Network Communications (CoCoNet)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Computing and Network Communications (CoCoNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COCONET.2018.8476916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computing and Network Communications (CoCoNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COCONET.2018.8476916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种基于稀疏表示的分类算法。人脸识别的准确性和评估时间是两个关键的性能指标。本文将改进的基于稀疏表示的分类算法与原始的基于稀疏表示的分类算法的性能进行了比较。使用Yale Face Database B进行MATLAB仿真,结果表明,改进的基于稀疏表示的分类算法在时间上有较好的表现。此外,作者研究并比较了在每个主题只有少量训练样本的情况下这些算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Face Recognition Algorithm Based on Sparse Representation
This paper considers a variation of Sparse Representation-based Classification algorithm. Accuracy and time of evaluation of face recognition are two key performance indicators. This work compares performance of modified Sparse Representation-based Classification algorithm against original Sparse Representation-based Classification algorithm. Yale Face Database B is used to carry MATLAB simulations and results show that modified Sparse Representation-based Classification algorithm outperforms in terms of time. Moreover, the authors study and compare these algorithms when there is only a few training samples per subject is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信