基于神经模糊和粒子群算法的热电联产冷却机组蒸汽段和冷却段模型

A. Tamiru, C. Rangkuti, F. M. Hashim
{"title":"基于神经模糊和粒子群算法的热电联产冷却机组蒸汽段和冷却段模型","authors":"A. Tamiru, C. Rangkuti, F. M. Hashim","doi":"10.1109/ICEENVIRON.2009.5398677","DOIUrl":null,"url":null,"abstract":"Developing a first principle nonlinear model for a thermal system that is already in operation is a very difficult task attributed to missing design parameters. This paper considers nonlinear modeling of subunits of a Cogeneration and Cooling Plant (CCP) -Heat Recovery Steam Generator (HRSG), Steam Header (SH) and Steam Absorption Chiller (SAC). Neuro-fuzzy approach trained by a sequence of optimization algorithms - Particle Swarm Optimization (PSO) followed by Back-Propagation (BP) -is used to develop models for the steam drum pressure, steam drum water level, steam flow rate and chilled water supply temperature. It includes the calculation of model confidence intervals (CI) based on the assumption that model and measurement errors are normally distributed and independent. Real operation data collected from Universiti Teknologi PETRONAS CCP is used to train and validate the models. Varying the probability in reading the percentage value of t - distribution for fixed degrees of freedom, a test is also performed on the capacity of the models for fault detection. The results show that the technique can be used to develop a substitute model for the three units, with the confidence level decided by the user.","PeriodicalId":211736,"journal":{"name":"2009 3rd International Conference on Energy and Environment (ICEE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neuro-fuzzy and PSO based model for the steam and cooling sections of a Cogeneration and Cooling Plant (CCP)\",\"authors\":\"A. Tamiru, C. Rangkuti, F. M. Hashim\",\"doi\":\"10.1109/ICEENVIRON.2009.5398677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing a first principle nonlinear model for a thermal system that is already in operation is a very difficult task attributed to missing design parameters. This paper considers nonlinear modeling of subunits of a Cogeneration and Cooling Plant (CCP) -Heat Recovery Steam Generator (HRSG), Steam Header (SH) and Steam Absorption Chiller (SAC). Neuro-fuzzy approach trained by a sequence of optimization algorithms - Particle Swarm Optimization (PSO) followed by Back-Propagation (BP) -is used to develop models for the steam drum pressure, steam drum water level, steam flow rate and chilled water supply temperature. It includes the calculation of model confidence intervals (CI) based on the assumption that model and measurement errors are normally distributed and independent. Real operation data collected from Universiti Teknologi PETRONAS CCP is used to train and validate the models. Varying the probability in reading the percentage value of t - distribution for fixed degrees of freedom, a test is also performed on the capacity of the models for fault detection. The results show that the technique can be used to develop a substitute model for the three units, with the confidence level decided by the user.\",\"PeriodicalId\":211736,\"journal\":{\"name\":\"2009 3rd International Conference on Energy and Environment (ICEE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Energy and Environment (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEENVIRON.2009.5398677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Energy and Environment (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEENVIRON.2009.5398677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于缺少设计参数,为已经运行的热系统建立第一原理非线性模型是一项非常困难的任务。本文研究了热电联产和冷却装置(CCP)的子单元——热回收蒸汽发生器(HRSG)、蒸汽集汽器(SH)和蒸汽吸收式制冷机(SAC)的非线性建模。采用粒子群算法(PSO)和反向传播算法(BP)训练的神经模糊方法,建立了汽包压力、汽包水位、蒸汽流量和冷冻水供应温度的模型。它包括在假设模型和测量误差呈正态分布且相互独立的基础上计算模型置信区间(CI)。从Universiti Teknologi PETRONAS CCP收集的实际操作数据用于训练和验证模型。对于固定的自由度,改变读取t -分布的百分比值的概率,还对模型的故障检测能力进行了测试。结果表明,该技术可用于建立三个单元的替代模型,其置信水平由用户决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro-fuzzy and PSO based model for the steam and cooling sections of a Cogeneration and Cooling Plant (CCP)
Developing a first principle nonlinear model for a thermal system that is already in operation is a very difficult task attributed to missing design parameters. This paper considers nonlinear modeling of subunits of a Cogeneration and Cooling Plant (CCP) -Heat Recovery Steam Generator (HRSG), Steam Header (SH) and Steam Absorption Chiller (SAC). Neuro-fuzzy approach trained by a sequence of optimization algorithms - Particle Swarm Optimization (PSO) followed by Back-Propagation (BP) -is used to develop models for the steam drum pressure, steam drum water level, steam flow rate and chilled water supply temperature. It includes the calculation of model confidence intervals (CI) based on the assumption that model and measurement errors are normally distributed and independent. Real operation data collected from Universiti Teknologi PETRONAS CCP is used to train and validate the models. Varying the probability in reading the percentage value of t - distribution for fixed degrees of freedom, a test is also performed on the capacity of the models for fault detection. The results show that the technique can be used to develop a substitute model for the three units, with the confidence level decided by the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信