O. Olatunji, S. Akinlabi, N. Madushele, P. Adedeji, S. Fatoba
{"title":"基于GA-ANFIS和PSO-ANFIS模型的生物质热值比较分析","authors":"O. Olatunji, S. Akinlabi, N. Madushele, P. Adedeji, S. Fatoba","doi":"10.1115/power2019-1825","DOIUrl":null,"url":null,"abstract":"\n This article applied a hybridized, adaptive neuro-fuzzy inference system ANFIS-genetic algorithm (GA-ANFIS) and ANFIS -Particle swarm optimization (PSO-ANFIS) to predict the HHV of biomass. The minimum input parameter for the prediction model is based on the proximate values of biomass which are fixed carbon (FC), ash content (A) and volatile matter (VM). The 214 data which cover a wide range of biomass classes were extracted from reliable literature for the training and testing of the models. The optimal results obtained based on each modelling algorithm were compared. The proposed algorithms were evaluated by statistical indices which are the Coefficient of Correlation (CC), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) estimated at 0.9189, 1.2369,7.4575 and 1.3560 respectively for PSO-ANFIS and 0.9088, 1.1200, 6.3960, 0.8895 respectively for GA-ANFIS. The GA showed exceptional ability to generalize in term of MAPE though at the expense of lesser CC which is obtained in the case of PSO. The reported indices showed that PSO-ANFIS and GA-ANFIS could be applied as an approach to the prediction of HHV based on proximate analysis instead of lengthy experiment procedures.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Analysis of the Heating Values of Biomass Based on GA-ANFIS and PSO-ANFIS Models\",\"authors\":\"O. Olatunji, S. Akinlabi, N. Madushele, P. Adedeji, S. Fatoba\",\"doi\":\"10.1115/power2019-1825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article applied a hybridized, adaptive neuro-fuzzy inference system ANFIS-genetic algorithm (GA-ANFIS) and ANFIS -Particle swarm optimization (PSO-ANFIS) to predict the HHV of biomass. The minimum input parameter for the prediction model is based on the proximate values of biomass which are fixed carbon (FC), ash content (A) and volatile matter (VM). The 214 data which cover a wide range of biomass classes were extracted from reliable literature for the training and testing of the models. The optimal results obtained based on each modelling algorithm were compared. The proposed algorithms were evaluated by statistical indices which are the Coefficient of Correlation (CC), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) estimated at 0.9189, 1.2369,7.4575 and 1.3560 respectively for PSO-ANFIS and 0.9088, 1.1200, 6.3960, 0.8895 respectively for GA-ANFIS. The GA showed exceptional ability to generalize in term of MAPE though at the expense of lesser CC which is obtained in the case of PSO. The reported indices showed that PSO-ANFIS and GA-ANFIS could be applied as an approach to the prediction of HHV based on proximate analysis instead of lengthy experiment procedures.\",\"PeriodicalId\":315864,\"journal\":{\"name\":\"ASME 2019 Power Conference\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2019-1825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2019-1825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis of the Heating Values of Biomass Based on GA-ANFIS and PSO-ANFIS Models
This article applied a hybridized, adaptive neuro-fuzzy inference system ANFIS-genetic algorithm (GA-ANFIS) and ANFIS -Particle swarm optimization (PSO-ANFIS) to predict the HHV of biomass. The minimum input parameter for the prediction model is based on the proximate values of biomass which are fixed carbon (FC), ash content (A) and volatile matter (VM). The 214 data which cover a wide range of biomass classes were extracted from reliable literature for the training and testing of the models. The optimal results obtained based on each modelling algorithm were compared. The proposed algorithms were evaluated by statistical indices which are the Coefficient of Correlation (CC), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) estimated at 0.9189, 1.2369,7.4575 and 1.3560 respectively for PSO-ANFIS and 0.9088, 1.1200, 6.3960, 0.8895 respectively for GA-ANFIS. The GA showed exceptional ability to generalize in term of MAPE though at the expense of lesser CC which is obtained in the case of PSO. The reported indices showed that PSO-ANFIS and GA-ANFIS could be applied as an approach to the prediction of HHV based on proximate analysis instead of lengthy experiment procedures.