P. Bagheri, Cristyan Quiñones-García, P. Reddy, S. Mita, R. Collazo, Z. Sitar
{"title":"化学势控制超宽禁带氮化铝中可控n型掺杂","authors":"P. Bagheri, Cristyan Quiñones-García, P. Reddy, S. Mita, R. Collazo, Z. Sitar","doi":"10.1109/csw55288.2022.9930436","DOIUrl":null,"url":null,"abstract":"High mobility of 270 cm2/Vs and free electron concentration as high as 1015 cm-3 were achieved in Si doped AlN grown on AlN single crystal via point defect management. CN incorporation in homoepitaxial film was successfully reduced by increasing the V/III and growth temperature as two growth knobs during the MOCVD growth. This work demonstrates the Si doping limit in AlN as low as mid-1017 cm-3 via Chemical Potential Control during the deposition process. CN and threading dislocations are two acceptor-type compensators determining the low doping limit in n-type AlN. Suppression of these defects to further improve the low doping limit (minimum achievable carrier concentration along with the maximum mobility) opens up pathways for realization of AlN-based power electronic devices.","PeriodicalId":382443,"journal":{"name":"2022 Compound Semiconductor Week (CSW)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable N-type Doping In Ultra-Wide Bandgap AlN By Chemical Potential Control\",\"authors\":\"P. Bagheri, Cristyan Quiñones-García, P. Reddy, S. Mita, R. Collazo, Z. Sitar\",\"doi\":\"10.1109/csw55288.2022.9930436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High mobility of 270 cm2/Vs and free electron concentration as high as 1015 cm-3 were achieved in Si doped AlN grown on AlN single crystal via point defect management. CN incorporation in homoepitaxial film was successfully reduced by increasing the V/III and growth temperature as two growth knobs during the MOCVD growth. This work demonstrates the Si doping limit in AlN as low as mid-1017 cm-3 via Chemical Potential Control during the deposition process. CN and threading dislocations are two acceptor-type compensators determining the low doping limit in n-type AlN. Suppression of these defects to further improve the low doping limit (minimum achievable carrier concentration along with the maximum mobility) opens up pathways for realization of AlN-based power electronic devices.\",\"PeriodicalId\":382443,\"journal\":{\"name\":\"2022 Compound Semiconductor Week (CSW)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Compound Semiconductor Week (CSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csw55288.2022.9930436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Compound Semiconductor Week (CSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csw55288.2022.9930436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controllable N-type Doping In Ultra-Wide Bandgap AlN By Chemical Potential Control
High mobility of 270 cm2/Vs and free electron concentration as high as 1015 cm-3 were achieved in Si doped AlN grown on AlN single crystal via point defect management. CN incorporation in homoepitaxial film was successfully reduced by increasing the V/III and growth temperature as two growth knobs during the MOCVD growth. This work demonstrates the Si doping limit in AlN as low as mid-1017 cm-3 via Chemical Potential Control during the deposition process. CN and threading dislocations are two acceptor-type compensators determining the low doping limit in n-type AlN. Suppression of these defects to further improve the low doping limit (minimum achievable carrier concentration along with the maximum mobility) opens up pathways for realization of AlN-based power electronic devices.