时间序列模型经验验证的信息论准则

F. Lamperti
{"title":"时间序列模型经验验证的信息论准则","authors":"F. Lamperti","doi":"10.2139/ssrn.2570828","DOIUrl":null,"url":null,"abstract":"Simulated models suffer intrinsically from validation and comparison problems. The choice of a suitable indicator quantifying the distance between the model and the data is pivotal to model selection. However, how to validate and discriminate between alternative models is still an open problem calling for further investigation, especially in light of the increasing use of simulations in social sciences. In this paper, we present an information theoretic criterion to measure how close models' synthetic output replicates the properties of observable time series without the need to resort to any likelihood function or to impose stationarity requirements. The indicator is sufficiently general to be applied to any kind of model able to simulate or predict time series data, from simple univariate models such as Auto Regressive Moving Average (ARMA) and Markov processes to more complex objects including agent-based or dynamic stochastic general equilibrium models. More specifically, we use a simple function of the L-divergence computed at different block lengths in order to select the model that is better able to reproduce the distributions of time changes in the data. To evaluate the L-divergence, probabilities are estimated across frequencies including a correction for the systematic bias. Finally, using a known data generating process, we show how this indicator can be used to validate and discriminate between different models providing a precise measure of the distance between each of them and the data.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"An Information Theoretic Criterion for Empirical Validation of Time Series Models\",\"authors\":\"F. Lamperti\",\"doi\":\"10.2139/ssrn.2570828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulated models suffer intrinsically from validation and comparison problems. The choice of a suitable indicator quantifying the distance between the model and the data is pivotal to model selection. However, how to validate and discriminate between alternative models is still an open problem calling for further investigation, especially in light of the increasing use of simulations in social sciences. In this paper, we present an information theoretic criterion to measure how close models' synthetic output replicates the properties of observable time series without the need to resort to any likelihood function or to impose stationarity requirements. The indicator is sufficiently general to be applied to any kind of model able to simulate or predict time series data, from simple univariate models such as Auto Regressive Moving Average (ARMA) and Markov processes to more complex objects including agent-based or dynamic stochastic general equilibrium models. More specifically, we use a simple function of the L-divergence computed at different block lengths in order to select the model that is better able to reproduce the distributions of time changes in the data. To evaluate the L-divergence, probabilities are estimated across frequencies including a correction for the systematic bias. Finally, using a known data generating process, we show how this indicator can be used to validate and discriminate between different models providing a precise measure of the distance between each of them and the data.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2570828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2570828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

模拟模型本质上受到验证和比较问题的困扰。选择合适的指标来量化模型与数据之间的距离是模型选择的关键。然而,如何验证和区分不同的模型仍然是一个需要进一步研究的开放性问题,特别是在社会科学中越来越多地使用模拟的情况下。在本文中,我们提出了一种信息理论准则来衡量模型的综合输出与可观测时间序列的特性的复制程度,而不需要借助于任何似然函数或强加平稳性要求。该指标足够通用,可以应用于任何能够模拟或预测时间序列数据的模型,从简单的单变量模型,如自动回归移动平均(ARMA)和马尔可夫过程,到更复杂的对象,包括基于主体或动态随机一般均衡模型。更具体地说,我们使用在不同块长度处计算的l -散度的简单函数,以便选择能够更好地再现数据中时间变化分布的模型。为了评估l -散度,估计各个频率的概率,包括对系统偏差的校正。最后,使用已知的数据生成过程,我们展示了如何使用该指标来验证和区分不同的模型,提供每个模型与数据之间距离的精确度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Information Theoretic Criterion for Empirical Validation of Time Series Models
Simulated models suffer intrinsically from validation and comparison problems. The choice of a suitable indicator quantifying the distance between the model and the data is pivotal to model selection. However, how to validate and discriminate between alternative models is still an open problem calling for further investigation, especially in light of the increasing use of simulations in social sciences. In this paper, we present an information theoretic criterion to measure how close models' synthetic output replicates the properties of observable time series without the need to resort to any likelihood function or to impose stationarity requirements. The indicator is sufficiently general to be applied to any kind of model able to simulate or predict time series data, from simple univariate models such as Auto Regressive Moving Average (ARMA) and Markov processes to more complex objects including agent-based or dynamic stochastic general equilibrium models. More specifically, we use a simple function of the L-divergence computed at different block lengths in order to select the model that is better able to reproduce the distributions of time changes in the data. To evaluate the L-divergence, probabilities are estimated across frequencies including a correction for the systematic bias. Finally, using a known data generating process, we show how this indicator can be used to validate and discriminate between different models providing a precise measure of the distance between each of them and the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信