三维人脸地标自动检测

Hamdi Boukamcha, Mohamed Elhallek, Mohamed Atri, F. Smach
{"title":"三维人脸地标自动检测","authors":"Hamdi Boukamcha, Mohamed Elhallek, Mohamed Atri, F. Smach","doi":"10.1109/WSCNIS.2015.7368276","DOIUrl":null,"url":null,"abstract":"This paper presents our methodology for Landmark Point detection to improve 3D face recognition in a presence of variant facial expression. The objective was to develop an automatic process for distinguishing and segmenting to be embedded in a 3D face recognition system using only 3D Point Distribution Model (PDM) as input. The approach used hydride method to extract this features from the surface curvature information. Landmark Localization is done on the segmented face via finding the change that decreases the deviation of the model from the mean profile. Face registering is achieved using previous anthropometric information and the localized landmarks. The results confirm that the method used is accurate and robust for the proposed application.","PeriodicalId":253256,"journal":{"name":"2015 World Symposium on Computer Networks and Information Security (WSCNIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"3D face landmark auto detection\",\"authors\":\"Hamdi Boukamcha, Mohamed Elhallek, Mohamed Atri, F. Smach\",\"doi\":\"10.1109/WSCNIS.2015.7368276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our methodology for Landmark Point detection to improve 3D face recognition in a presence of variant facial expression. The objective was to develop an automatic process for distinguishing and segmenting to be embedded in a 3D face recognition system using only 3D Point Distribution Model (PDM) as input. The approach used hydride method to extract this features from the surface curvature information. Landmark Localization is done on the segmented face via finding the change that decreases the deviation of the model from the mean profile. Face registering is achieved using previous anthropometric information and the localized landmarks. The results confirm that the method used is accurate and robust for the proposed application.\",\"PeriodicalId\":253256,\"journal\":{\"name\":\"2015 World Symposium on Computer Networks and Information Security (WSCNIS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 World Symposium on Computer Networks and Information Security (WSCNIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSCNIS.2015.7368276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 World Symposium on Computer Networks and Information Security (WSCNIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCNIS.2015.7368276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了我们的地标点检测方法,以提高在不同面部表情存在下的3D人脸识别。目标是开发一种自动识别和分割过程,仅使用3D点分布模型(PDM)作为输入嵌入3D人脸识别系统。该方法采用氢化物法从曲面曲率信息中提取这些特征。通过寻找减少模型与平均轮廓偏差的变化,对分割后的人脸进行地标定位。人脸注册是利用先前的人体测量信息和定位的地标来实现的。结果表明,该方法具有较好的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D face landmark auto detection
This paper presents our methodology for Landmark Point detection to improve 3D face recognition in a presence of variant facial expression. The objective was to develop an automatic process for distinguishing and segmenting to be embedded in a 3D face recognition system using only 3D Point Distribution Model (PDM) as input. The approach used hydride method to extract this features from the surface curvature information. Landmark Localization is done on the segmented face via finding the change that decreases the deviation of the model from the mean profile. Face registering is achieved using previous anthropometric information and the localized landmarks. The results confirm that the method used is accurate and robust for the proposed application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信