空间大数据并行计算及统计分拆方程渐近性的推导

Zeyu Long
{"title":"空间大数据并行计算及统计分拆方程渐近性的推导","authors":"Zeyu Long","doi":"10.1117/12.2671640","DOIUrl":null,"url":null,"abstract":"At present, the parallel computing theory based on spatial big data has problems such as difficult algorithms, difficult operations, and complex formulas, based on this, this paper proposes a p-Dot parallel computing model based on the traditional parallel computing model of BSP (Bulk Synchronous Parallel), and then tests the model effect by setting experiments. The results reveal that: (1) All curves are open up and have a minimum value. (2) The dataset with a capacity of 0.25GB is the benchmark dataset. (3) The expansion rate e(w) of the input data capacity of the model under different test procedures has a linear relationship with the expansion rate e(n* ) of the corresponding optimal number of machines. (4) When 𝑛→∞ in the partition equation p(n), p(n) tends to a certain value.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel computing of spatial big data and derivation of asymptotic behavior of statistical partition equation\",\"authors\":\"Zeyu Long\",\"doi\":\"10.1117/12.2671640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the parallel computing theory based on spatial big data has problems such as difficult algorithms, difficult operations, and complex formulas, based on this, this paper proposes a p-Dot parallel computing model based on the traditional parallel computing model of BSP (Bulk Synchronous Parallel), and then tests the model effect by setting experiments. The results reveal that: (1) All curves are open up and have a minimum value. (2) The dataset with a capacity of 0.25GB is the benchmark dataset. (3) The expansion rate e(w) of the input data capacity of the model under different test procedures has a linear relationship with the expansion rate e(n* ) of the corresponding optimal number of machines. (4) When 𝑛→∞ in the partition equation p(n), p(n) tends to a certain value.\",\"PeriodicalId\":120866,\"journal\":{\"name\":\"Artificial Intelligence and Big Data Forum\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Big Data Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前基于空间大数据的并行计算理论存在算法难、操作难、公式复杂等问题,基于此,本文在传统并行计算模型BSP (Bulk Synchronous parallel)的基础上提出了p-Dot并行计算模型,并通过设置实验对模型效果进行了检验。结果表明:(1)所有的曲线都是开放的,并且有一个最小值。(2)容量为0.25GB的数据集为基准数据集。(3)不同试验程序下模型输入数据容量的扩展率e(w)与对应的最优机器数量的扩展率e(n*)呈线性关系。(4)当分划方程p(n)中𝑛→∞时,p(n)趋于某一值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel computing of spatial big data and derivation of asymptotic behavior of statistical partition equation
At present, the parallel computing theory based on spatial big data has problems such as difficult algorithms, difficult operations, and complex formulas, based on this, this paper proposes a p-Dot parallel computing model based on the traditional parallel computing model of BSP (Bulk Synchronous Parallel), and then tests the model effect by setting experiments. The results reveal that: (1) All curves are open up and have a minimum value. (2) The dataset with a capacity of 0.25GB is the benchmark dataset. (3) The expansion rate e(w) of the input data capacity of the model under different test procedures has a linear relationship with the expansion rate e(n* ) of the corresponding optimal number of machines. (4) When 𝑛→∞ in the partition equation p(n), p(n) tends to a certain value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信