基于深度学习神经网络的城市出租车大数据支付类型分类

H. Al-Ash, A. Wibisono, A. Krisnadhi
{"title":"基于深度学习神经网络的城市出租车大数据支付类型分类","authors":"H. Al-Ash, A. Wibisono, A. Krisnadhi","doi":"10.1109/ICACSIS.2018.8618200","DOIUrl":null,"url":null,"abstract":"Taxi service as a reliable means of public transportation is a public need. Classification of payment types is performed on New York City Yellow Taxi Trip Open Data that considered as big data and there is a number of unlabelled data greater than the number of labeled training data was situated. We used the framework namely learning from unlabelled data (lfun) and deep learning neural network as the classifier to address the classification problem. Experimentation to find out the better performance of using lfun was conducted. We achieved the f-measure average value reaching 0.725 for classification using the lfun framework.","PeriodicalId":207227,"journal":{"name":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Payment Type Classification on Urban Taxi Big Data using Deep Learning Neural Network\",\"authors\":\"H. Al-Ash, A. Wibisono, A. Krisnadhi\",\"doi\":\"10.1109/ICACSIS.2018.8618200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taxi service as a reliable means of public transportation is a public need. Classification of payment types is performed on New York City Yellow Taxi Trip Open Data that considered as big data and there is a number of unlabelled data greater than the number of labeled training data was situated. We used the framework namely learning from unlabelled data (lfun) and deep learning neural network as the classifier to address the classification problem. Experimentation to find out the better performance of using lfun was conducted. We achieved the f-measure average value reaching 0.725 for classification using the lfun framework.\",\"PeriodicalId\":207227,\"journal\":{\"name\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2018.8618200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2018.8618200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

的士服务作为一种可靠的公共交通工具是市民的需要。在纽约市黄色出租车旅行开放数据(New York City Yellow Taxi Trip Open Data)上进行支付类型分类,该数据被认为是大数据,未标记的数据数量大于已标记的训练数据数量。我们使用框架即从未标记数据中学习(lfun)和深度学习神经网络作为分类器来解决分类问题。为了找出使用lfun的更好的性能,进行了实验。我们使用lfun框架实现了分类的f测量平均值达到0.725。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Payment Type Classification on Urban Taxi Big Data using Deep Learning Neural Network
Taxi service as a reliable means of public transportation is a public need. Classification of payment types is performed on New York City Yellow Taxi Trip Open Data that considered as big data and there is a number of unlabelled data greater than the number of labeled training data was situated. We used the framework namely learning from unlabelled data (lfun) and deep learning neural network as the classifier to address the classification problem. Experimentation to find out the better performance of using lfun was conducted. We achieved the f-measure average value reaching 0.725 for classification using the lfun framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信