具有准确性和成本保证的无监督众包

Yash Didwania, J. Nair, N. Hemachandra
{"title":"具有准确性和成本保证的无监督众包","authors":"Yash Didwania, J. Nair, N. Hemachandra","doi":"10.23919/WiOpt56218.2022.9930606","DOIUrl":null,"url":null,"abstract":"We consider the problem of cost-optimal utilization of a crowdsourcing platform for binary, unsupervised classification of a collection of items, given a prescribed error threshold. Workers on the crowdsourcing platform are assumed to be divided into multiple classes, based on their skill, experience, and/or past performance. We model each worker class via an unknown confusion matrix, and a (known) price to be paid per label prediction. For this setting, we propose algorithms for acquiring label predictions from workers, and for inferring the true labels of items. We prove that (i) our algorithms satisfy the prescribed error threshold, and (ii) if the number of (unlabeled) items available is large enough, the algorithms incur a cost that is near-optimal. Finally, we validate our algorithms, and some heuristics inspired by them, through an extensive case study.","PeriodicalId":228040,"journal":{"name":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Crowdsourcing with Accuracy and Cost Guarantees\",\"authors\":\"Yash Didwania, J. Nair, N. Hemachandra\",\"doi\":\"10.23919/WiOpt56218.2022.9930606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of cost-optimal utilization of a crowdsourcing platform for binary, unsupervised classification of a collection of items, given a prescribed error threshold. Workers on the crowdsourcing platform are assumed to be divided into multiple classes, based on their skill, experience, and/or past performance. We model each worker class via an unknown confusion matrix, and a (known) price to be paid per label prediction. For this setting, we propose algorithms for acquiring label predictions from workers, and for inferring the true labels of items. We prove that (i) our algorithms satisfy the prescribed error threshold, and (ii) if the number of (unlabeled) items available is large enough, the algorithms incur a cost that is near-optimal. Finally, we validate our algorithms, and some heuristics inspired by them, through an extensive case study.\",\"PeriodicalId\":228040,\"journal\":{\"name\":\"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WiOpt56218.2022.9930606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WiOpt56218.2022.9930606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个众包平台的成本最优利用问题,在给定的错误阈值的情况下,对一组物品进行二元无监督分类。众包平台上的员工根据他们的技能、经验和/或过去的表现被分为多个班级。我们通过未知的混淆矩阵和每个标签预测要支付的(已知的)价格来建模每个工人类。对于这种设置,我们提出了从工人那里获取标签预测的算法,并用于推断物品的真实标签。我们证明(i)我们的算法满足规定的错误阈值,并且(ii)如果可用的(未标记的)项目数量足够大,算法会产生接近最优的成本。最后,我们通过一个广泛的案例研究来验证我们的算法,以及受其启发的一些启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Crowdsourcing with Accuracy and Cost Guarantees
We consider the problem of cost-optimal utilization of a crowdsourcing platform for binary, unsupervised classification of a collection of items, given a prescribed error threshold. Workers on the crowdsourcing platform are assumed to be divided into multiple classes, based on their skill, experience, and/or past performance. We model each worker class via an unknown confusion matrix, and a (known) price to be paid per label prediction. For this setting, we propose algorithms for acquiring label predictions from workers, and for inferring the true labels of items. We prove that (i) our algorithms satisfy the prescribed error threshold, and (ii) if the number of (unlabeled) items available is large enough, the algorithms incur a cost that is near-optimal. Finally, we validate our algorithms, and some heuristics inspired by them, through an extensive case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信