{"title":"给定Ricci曲率的齐次度量的存在性","authors":"M. Gould, A. Pulemotov","doi":"10.5802/TSG.313","DOIUrl":null,"url":null,"abstract":"— Consider a compact Lie group G and a closed subgroup H < G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M = G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c > 0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.","PeriodicalId":256700,"journal":{"name":"Séminaire de théorie spectrale et géométrie","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of homogeneous metrics with prescribed Ricci curvature\",\"authors\":\"M. Gould, A. Pulemotov\",\"doi\":\"10.5802/TSG.313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Consider a compact Lie group G and a closed subgroup H < G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M = G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c > 0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.\",\"PeriodicalId\":256700,\"journal\":{\"name\":\"Séminaire de théorie spectrale et géométrie\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Séminaire de théorie spectrale et géométrie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/TSG.313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Séminaire de théorie spectrale et géométrie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/TSG.313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of homogeneous metrics with prescribed Ricci curvature
— Consider a compact Lie group G and a closed subgroup H < G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M = G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c > 0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.