给定Ricci曲率的齐次度量的存在性

M. Gould, A. Pulemotov
{"title":"给定Ricci曲率的齐次度量的存在性","authors":"M. Gould, A. Pulemotov","doi":"10.5802/TSG.313","DOIUrl":null,"url":null,"abstract":"— Consider a compact Lie group G and a closed subgroup H < G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M = G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c > 0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.","PeriodicalId":256700,"journal":{"name":"Séminaire de théorie spectrale et géométrie","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of homogeneous metrics with prescribed Ricci curvature\",\"authors\":\"M. Gould, A. Pulemotov\",\"doi\":\"10.5802/TSG.313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Consider a compact Lie group G and a closed subgroup H < G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M = G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c > 0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.\",\"PeriodicalId\":256700,\"journal\":{\"name\":\"Séminaire de théorie spectrale et géométrie\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Séminaire de théorie spectrale et géométrie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/TSG.313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Séminaire de théorie spectrale et géométrie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/TSG.313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

-考虑紧李群G和闭子群H < G,设T是齐次空间M = G/H上的一个正定G不变(0,2)张量场。在本文中,我们给出了M上一个g不变黎曼度规存在的一个充分条件,该度规的里奇曲率与cT重合于某c b>0 0。事实上,如果M的各向同性表示分裂成两个相等的不可约和,这个条件是必要的。在说明了主要结果后,给出了一个算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of homogeneous metrics with prescribed Ricci curvature
— Consider a compact Lie group G and a closed subgroup H < G. Suppose T is a positive-definite G-invariant (0,2)-tensor field on the homogeneous space M = G/H. In this note, we state a sufficient condition for the existence of a G-invariant Riemannian metric on M whose Ricci curvature coincides with cT for some c > 0. This condition is, in fact, necessary if the isotropy representation of M splits into two inequivalent irreducible summands. After stating the main result, we work out an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信