从一个漂浮的潮汐能平台测量尾流

Maricarmen Guerra París, Alex E Hay, Benjamin Troncoso
{"title":"从一个漂浮的潮汐能平台测量尾流","authors":"Maricarmen Guerra París, Alex E Hay, Benjamin Troncoso","doi":"10.36688/ewtec-2023-284","DOIUrl":null,"url":null,"abstract":"Wake measurements are critical for quantifying the hydrodynamic impacts of turbine presence and tidal energy extraction on the tidal flow. Turbine wakes are typically assessed using numerical models and controlled laboratory experiments, with only a few field studies available for the wakes of full-scale operating tidal turbines.\n \nIn this investigation we present field observations of the combined wake generated by the four-turbine array mounted onboard Sustainable Marine Energy Canada PLAT-I 4.63. Measurements were conducted downstream of the platform in Grand Passage, a tidal channel in the southwest of the Bay of Fundy in eastern Canada in October 2020. Velocity data were obtained by a suite of mobile Acoustic Doppler Current Profilers (ADCP), both vessel-mounted and free-drifting. Data were collected during ebb and flood tides (and therefore with time-varying inflow velocity), and under different turbine operating conditions. The collected data were organized according to the turbine inflow velocity for ebb and flood tide. For each tide, the wake and undisturbed flow regions to the sides of the wake were identified. Vertical profiles of velocity in the wake were compared to inflow velocity measured by a current-meter onboard PLAT-I and with measurements in the undisturbed flow to the sides of PLAT-I wake.\n \nIn all measurements the PLAT-I wake manifests as a reduction in flow speed at the depths spanned by the turbine rotors. The reduction is maximum near the platform for both ebb and flood. For flood, velocity profiles vertically mix less than 5 effective diameters downstream of the array, but velocities remain slower compared to the flow outside of the wake. Flow speed increases downstream, recovering approximately about 20 effective diameters from the platform. For ebb, the velocity reduction persists farther downstream compared to flood, there is less vertical mixing, and the wake shape is still present beyond 10 effective diameters downstream of the platform. Increased turbulence is also observed downstream of the platform, which recovers to levels similar to those of the surrounding undisturbed flow about 10 effective diameters downstream of the turbine for both ebb and flood. Comparisons of results between the two measurements approaches, and between the wake of clean and bio-fouled turbines are also explored.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements of the wake from a floating tidal energy platform\",\"authors\":\"Maricarmen Guerra París, Alex E Hay, Benjamin Troncoso\",\"doi\":\"10.36688/ewtec-2023-284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wake measurements are critical for quantifying the hydrodynamic impacts of turbine presence and tidal energy extraction on the tidal flow. Turbine wakes are typically assessed using numerical models and controlled laboratory experiments, with only a few field studies available for the wakes of full-scale operating tidal turbines.\\n \\nIn this investigation we present field observations of the combined wake generated by the four-turbine array mounted onboard Sustainable Marine Energy Canada PLAT-I 4.63. Measurements were conducted downstream of the platform in Grand Passage, a tidal channel in the southwest of the Bay of Fundy in eastern Canada in October 2020. Velocity data were obtained by a suite of mobile Acoustic Doppler Current Profilers (ADCP), both vessel-mounted and free-drifting. Data were collected during ebb and flood tides (and therefore with time-varying inflow velocity), and under different turbine operating conditions. The collected data were organized according to the turbine inflow velocity for ebb and flood tide. For each tide, the wake and undisturbed flow regions to the sides of the wake were identified. Vertical profiles of velocity in the wake were compared to inflow velocity measured by a current-meter onboard PLAT-I and with measurements in the undisturbed flow to the sides of PLAT-I wake.\\n \\nIn all measurements the PLAT-I wake manifests as a reduction in flow speed at the depths spanned by the turbine rotors. The reduction is maximum near the platform for both ebb and flood. For flood, velocity profiles vertically mix less than 5 effective diameters downstream of the array, but velocities remain slower compared to the flow outside of the wake. Flow speed increases downstream, recovering approximately about 20 effective diameters from the platform. For ebb, the velocity reduction persists farther downstream compared to flood, there is less vertical mixing, and the wake shape is still present beyond 10 effective diameters downstream of the platform. Increased turbulence is also observed downstream of the platform, which recovers to levels similar to those of the surrounding undisturbed flow about 10 effective diameters downstream of the turbine for both ebb and flood. Comparisons of results between the two measurements approaches, and between the wake of clean and bio-fouled turbines are also explored.\",\"PeriodicalId\":201789,\"journal\":{\"name\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36688/ewtec-2023-284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the European Wave and Tidal Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/ewtec-2023-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尾迹测量是量化水轮机存在和潮汐能提取对潮汐流的水动力影响的关键。涡轮尾迹通常使用数值模型和受控实验室实验进行评估,只有少数实地研究可用于全尺寸运行的潮汐涡轮机尾迹。在本研究中,我们对加拿大可持续海洋能源公司PLAT-I 4.63上安装的四涡轮阵列产生的联合尾流进行了现场观察。2020年10月,在加拿大东部芬迪湾西南部的潮汐通道Grand Passage的平台下游进行了测量。速度数据是通过一套移动声学多普勒电流分析器(ADCP)获得的,包括船载和自由漂流。数据是在退潮和涨潮期间(因此随时间变化的入流速度)和不同的涡轮机运行条件下收集的。收集到的数据按照退潮和涨潮时的水轮机入流速度进行整理。对于每次潮汐,确定了尾迹和尾迹两侧的未扰动流区。将尾迹的垂直速度剖面与plati上的流速仪测量的入流速度进行了比较,并与plati尾迹两侧未受干扰的流动进行了比较。在所有测量中,plati尾迹表现为在涡轮转子跨越的深度处流速的降低。退潮和涨潮时,在台地附近减小最大。对于洪水,速度分布垂直混合在阵列下游小于5个有效直径,但与尾迹外的流动相比,速度仍然较慢。下游的流速增加,从平台恢复大约20个有效直径。在退潮时,相比于洪潮,速度降低在下游持续更远,垂直混合较少,并且在平台下游10个有效直径以上仍然存在尾迹形状。在平台下游也观察到湍流的增加,在退潮和涨潮时,它恢复到与周围未受干扰的流动相似的水平,大约在涡轮机下游10个有效直径处。对两种测量方法的结果进行了比较,并对清洁涡轮和生物污染涡轮的尾迹进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurements of the wake from a floating tidal energy platform
Wake measurements are critical for quantifying the hydrodynamic impacts of turbine presence and tidal energy extraction on the tidal flow. Turbine wakes are typically assessed using numerical models and controlled laboratory experiments, with only a few field studies available for the wakes of full-scale operating tidal turbines.   In this investigation we present field observations of the combined wake generated by the four-turbine array mounted onboard Sustainable Marine Energy Canada PLAT-I 4.63. Measurements were conducted downstream of the platform in Grand Passage, a tidal channel in the southwest of the Bay of Fundy in eastern Canada in October 2020. Velocity data were obtained by a suite of mobile Acoustic Doppler Current Profilers (ADCP), both vessel-mounted and free-drifting. Data were collected during ebb and flood tides (and therefore with time-varying inflow velocity), and under different turbine operating conditions. The collected data were organized according to the turbine inflow velocity for ebb and flood tide. For each tide, the wake and undisturbed flow regions to the sides of the wake were identified. Vertical profiles of velocity in the wake were compared to inflow velocity measured by a current-meter onboard PLAT-I and with measurements in the undisturbed flow to the sides of PLAT-I wake.   In all measurements the PLAT-I wake manifests as a reduction in flow speed at the depths spanned by the turbine rotors. The reduction is maximum near the platform for both ebb and flood. For flood, velocity profiles vertically mix less than 5 effective diameters downstream of the array, but velocities remain slower compared to the flow outside of the wake. Flow speed increases downstream, recovering approximately about 20 effective diameters from the platform. For ebb, the velocity reduction persists farther downstream compared to flood, there is less vertical mixing, and the wake shape is still present beyond 10 effective diameters downstream of the platform. Increased turbulence is also observed downstream of the platform, which recovers to levels similar to those of the surrounding undisturbed flow about 10 effective diameters downstream of the turbine for both ebb and flood. Comparisons of results between the two measurements approaches, and between the wake of clean and bio-fouled turbines are also explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信