一种用于软件可靠性增长模型参数估计的改进遗传算法

Chao-Jung Hsu, Chin-Yu Huang, T. Chen
{"title":"一种用于软件可靠性增长模型参数估计的改进遗传算法","authors":"Chao-Jung Hsu, Chin-Yu Huang, T. Chen","doi":"10.1109/ISSRE.2008.35","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.","PeriodicalId":448275,"journal":{"name":"2008 19th International Symposium on Software Reliability Engineering (ISSRE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Modified Genetic Algorithm for Parameter Estimation of Software Reliability Growth Models\",\"authors\":\"Chao-Jung Hsu, Chin-Yu Huang, T. Chen\",\"doi\":\"10.1109/ISSRE.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.\",\"PeriodicalId\":448275,\"journal\":{\"name\":\"2008 19th International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 19th International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 19th International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种具有校正适应度函数、加权位突变和重构机制的改进遗传算法(MGA),用于软件可靠性增长模型的参数估计。最后以实际故障数据为例,验证了该方法的有效性。实验结果表明,MGA对SRGM的参数估计是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Genetic Algorithm for Parameter Estimation of Software Reliability Growth Models
In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信