{"title":"一种用于软件可靠性增长模型参数估计的改进遗传算法","authors":"Chao-Jung Hsu, Chin-Yu Huang, T. Chen","doi":"10.1109/ISSRE.2008.35","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.","PeriodicalId":448275,"journal":{"name":"2008 19th International Symposium on Software Reliability Engineering (ISSRE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Modified Genetic Algorithm for Parameter Estimation of Software Reliability Growth Models\",\"authors\":\"Chao-Jung Hsu, Chin-Yu Huang, T. Chen\",\"doi\":\"10.1109/ISSRE.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.\",\"PeriodicalId\":448275,\"journal\":{\"name\":\"2008 19th International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 19th International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 19th International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Genetic Algorithm for Parameter Estimation of Software Reliability Growth Models
In this paper, we propose a modified genetic algorithm (MGA) with calibrating fitness functions, weighted bit mutation, and rebuilding mechanism for the parameter estimation of software reliability growth models (SRGMs). An example using a real failure data is given to demonstrate the performance of proposed method. Experimental result shows that MGA is effective for estimating the parameters of SRGM.