面向软件缺陷预测的集成特征选择技术比较研究

Huanjing Wang, T. Khoshgoftaar, Amri Napolitano
{"title":"面向软件缺陷预测的集成特征选择技术比较研究","authors":"Huanjing Wang, T. Khoshgoftaar, Amri Napolitano","doi":"10.1109/ICMLA.2010.27","DOIUrl":null,"url":null,"abstract":"Feature selection has become the essential step in many data mining applications. Using a single feature subset selection method may generate local optima. Ensembles of feature selection methods attempt to combine multiple feature selection methods instead of using a single one. We present a comprehensive empirical study examining 17 different ensembles of feature ranking techniques (rankers) including six commonly-used feature ranking techniques, the signal-to-noise filter technique, and 11 threshold-based feature ranking techniques. This study utilized 16 real-world software measurement data sets of different sizes and built 13,600 classification models. Experimental results indicate that ensembles of very few rankers are very effective and even better than ensembles of many or all rankers.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"30 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"A Comparative Study of Ensemble Feature Selection Techniques for Software Defect Prediction\",\"authors\":\"Huanjing Wang, T. Khoshgoftaar, Amri Napolitano\",\"doi\":\"10.1109/ICMLA.2010.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection has become the essential step in many data mining applications. Using a single feature subset selection method may generate local optima. Ensembles of feature selection methods attempt to combine multiple feature selection methods instead of using a single one. We present a comprehensive empirical study examining 17 different ensembles of feature ranking techniques (rankers) including six commonly-used feature ranking techniques, the signal-to-noise filter technique, and 11 threshold-based feature ranking techniques. This study utilized 16 real-world software measurement data sets of different sizes and built 13,600 classification models. Experimental results indicate that ensembles of very few rankers are very effective and even better than ensembles of many or all rankers.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"30 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

特征选择已成为许多数据挖掘应用中必不可少的步骤。使用单个特征子集选择方法可能产生局部最优。特征选择方法的集成试图将多个特征选择方法组合起来,而不是使用单一的特征选择方法。本文对17种不同的特征排序技术(rank)进行了全面的实证研究,包括6种常用的特征排序技术、信噪滤波技术和11种基于阈值的特征排序技术。本研究利用16个不同规模的真实软件测量数据集,构建了13600个分类模型。实验结果表明,少量排序器的集成非常有效,甚至优于多个或全部排序器的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Ensemble Feature Selection Techniques for Software Defect Prediction
Feature selection has become the essential step in many data mining applications. Using a single feature subset selection method may generate local optima. Ensembles of feature selection methods attempt to combine multiple feature selection methods instead of using a single one. We present a comprehensive empirical study examining 17 different ensembles of feature ranking techniques (rankers) including six commonly-used feature ranking techniques, the signal-to-noise filter technique, and 11 threshold-based feature ranking techniques. This study utilized 16 real-world software measurement data sets of different sizes and built 13,600 classification models. Experimental results indicate that ensembles of very few rankers are very effective and even better than ensembles of many or all rankers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信