利用序贯凸优化方法保持稳态稳定的非线性模型约简

Martin Löhning, J. Hasenauer, F. Allgöwer
{"title":"利用序贯凸优化方法保持稳态稳定的非线性模型约简","authors":"Martin Löhning, J. Hasenauer, F. Allgöwer","doi":"10.1109/CDC.2011.6161227","DOIUrl":null,"url":null,"abstract":"Models of dynamical systems become increasingly complex. While this allows a more accurate description of the underlying process, it often renders the application of model-based control algorithms infeasible. In this paper, we propose a model reduction procedure for systems described by nonlinear ordinary differential equations. The reduced model used to approximate the input-output map of the system is parameterized via the observability normal form. To preserve the steady states of the system and their stability properties, the set of feasible parameters of the reduced model has to be constrained. Therefore, we derive necessary and sufficient conditions for simultaneous exponential stability of a set of steady states of the nonlinear reduced model. The local approximation of these constraints results in a sequential convex program for computing the optimal parameters. The proposed approach is evaluated using the Fermi-Pasta-Ulam model.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Steady state stability preserving nonlinear model reduction using sequential convex optimization\",\"authors\":\"Martin Löhning, J. Hasenauer, F. Allgöwer\",\"doi\":\"10.1109/CDC.2011.6161227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models of dynamical systems become increasingly complex. While this allows a more accurate description of the underlying process, it often renders the application of model-based control algorithms infeasible. In this paper, we propose a model reduction procedure for systems described by nonlinear ordinary differential equations. The reduced model used to approximate the input-output map of the system is parameterized via the observability normal form. To preserve the steady states of the system and their stability properties, the set of feasible parameters of the reduced model has to be constrained. Therefore, we derive necessary and sufficient conditions for simultaneous exponential stability of a set of steady states of the nonlinear reduced model. The local approximation of these constraints results in a sequential convex program for computing the optimal parameters. The proposed approach is evaluated using the Fermi-Pasta-Ulam model.\",\"PeriodicalId\":360068,\"journal\":{\"name\":\"IEEE Conference on Decision and Control and European Control Conference\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control and European Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2011.6161227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6161227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

动力系统的模型变得越来越复杂。虽然这允许对底层过程进行更准确的描述,但它通常使基于模型的控制算法的应用变得不可行的。本文提出了用非线性常微分方程描述系统的模型约简方法。通过可观测范式对用于近似系统输入输出映射的简化模型进行参数化。为了保持系统的稳定状态及其稳定性,必须对简化模型的可行参数集进行约束。因此,我们得到了非线性简化模型的一组稳态同时指数稳定的充分必要条件。这些约束的局部逼近得到一个计算最优参数的顺序凸规划。使用Fermi-Pasta-Ulam模型对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady state stability preserving nonlinear model reduction using sequential convex optimization
Models of dynamical systems become increasingly complex. While this allows a more accurate description of the underlying process, it often renders the application of model-based control algorithms infeasible. In this paper, we propose a model reduction procedure for systems described by nonlinear ordinary differential equations. The reduced model used to approximate the input-output map of the system is parameterized via the observability normal form. To preserve the steady states of the system and their stability properties, the set of feasible parameters of the reduced model has to be constrained. Therefore, we derive necessary and sufficient conditions for simultaneous exponential stability of a set of steady states of the nonlinear reduced model. The local approximation of these constraints results in a sequential convex program for computing the optimal parameters. The proposed approach is evaluated using the Fermi-Pasta-Ulam model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信